Sept 4 Slides

Sept 4 Slides

1. Opening Notes
2. Power Sets
3. Disjoint Sets
4. Set-builder Notation
5. Properties/Laws of sets
[More practice]

Other Notations

$$
\mathcal{P}(X)
$$

$$
\mathcal{P}(X)
$$

$$
\mathscr{P}(X)
$$

$$
\wp(X)
$$

$$
\begin{gathered}
\bar{A} \\
A^{\prime} \\
\widetilde{A} \\
A^{\sim} \\
A^{\mathrm{c}}
\end{gathered}
$$

Power sets

4.1.3 Power Set

The set of all the subsets of a set, A, is called the power set, $\operatorname{pow}(A)$, of A. So

$$
B \in \operatorname{pow}(A) \quad \text { IFF } \quad B \subseteq A
$$

For example, the elements of $\operatorname{pow}(\{1,2\})$ are $\emptyset,\{1\},\{2\}$ and $\{1,2\}$.

Power sets -- Break-outs

1.) What is the power-set of $\}$? Cardinality?
2.) What is the power set of $\{a, b, c\}$? Cardinality?
3.) What is the power set of $\{\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}\}$?

Cardinality?

Can we see a rule/pattern to

 determine the cardinality of a powerset?
Can we see a rule/pattern to

 determine the cardinality of a powerset?$$
|\mathcal{P}(X)|=2^{|X|}
$$

Disjoint Sets

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint
- \{New York, Washington\} and $\{3,4\}$ are disjoint

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint
- \{New York, Washington\} and $\{3,4\}$ are disjoint
- $\{1,2\}$ and \varnothing are disjoint
- Their intersection is the empty set

Disjoint Sets

- Formal definition for disjoint sets: two sets are disjoint if their intersection is the empty set
- Further examples:
- $\{1,2,3\}$ and $\{3,4,5\}$ are not disjoint
- \{New York, Washington\} and $\{3,4\}$ are disjoint
- $\{1,2\}$ and \varnothing are disjoint
- Their intersection is the empty set
- \varnothing and \varnothing are disjoint!
- Their intersection is the empty set

Set-Builder Notation

The set of The natural numbers

https://Itcconline.net/greenl/courses/152a/definitions/SETS.HTM

The set of The natural numbers

https://Itcconline.net/greenl/courses/152a/definitions/SETS.HTM

Set-Builder Notation

Let's formalize our set operators in "set-builder notation"

Quick Side-Note:

-We will need to link together multiple "conditions" with "and's", "not's" and "or's"

Special symbols:

\vee is "or"	(notice similarity to U)
\wedge is "and"	(notice similarity to \cap)
\neg is "not"	

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\urcorner is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers
$E=\{x \in \mathcal{N} \mid x>2\}=\{3,4,5,6, \ldots\}$
in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S
$$

For Reference:
The set of The natural numbers
V is "or"
\wedge is "and"
$E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}$
\neg is "not"
in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T\}
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- My turn!

Intersection $S \cap T$: the elements that belong both to S and to T.

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T\}
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
(notice similarity to \cup)
(notice similarity to \cap)

The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

Set-Builder Notation -- Your turn!

Union $S \cup T$: the elements that belong either to S or to T (or both).

$$
S \cup T=
$$

For Reference:
V is "or"
\wedge is "and"
\urcorner is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- Your turn!

Union $S \cup T$: the elements that belong either to S or to T (or both).

$$
S \cup T=\{x \in U \mid x \in S \vee x \in T\}
$$

For Reference:
V is "or"
\wedge is "and"
\urcorner is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

$$
S \backslash T=
$$

For Reference:
\checkmark is "or"
\wedge is "and"
ᄀ is "not"

Set-Builder Notation -- Your turn!

Difference $S \backslash T$: the elements that belong to S but not to T.

$$
S \backslash T=\{x \in U \mid x \in S \wedge x \notin T\}
$$

For Reference:
V is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- Your turn!

Complement \bar{S} : elements (of the universe) that don't belong to S.

$$
\bar{S}=
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

Set-Builder Notation -- Your turn!

Complement \bar{S} : elements (of the universe) that don't belong to S.

$$
\bar{S}=\{x \in U \mid x \notin S\}
$$

For Reference:
\checkmark is "or"
\wedge is "and"
\neg is "not"
The set of The natural numbers

$$
E=\{x \in N \mid x>2\}=\{3,4,5,6, \ldots\}
$$

in such that

