Sept 7 Slides

Properties Of Set Union

ロ $A \cup \varnothing=$
ロ $\mathrm{A} \cup \boldsymbol{U}=$

- $A \cup A=$

Properties Of Set Union

$\square A \cup \varnothing=A$
ロ $\mathrm{A} \cup \boldsymbol{U}=$

- $\mathrm{A} \cup \mathrm{A}=$

Identity law

Properties Of Set Union

$\square A \cup \varnothing=A$
$\square \mathrm{A} \cup \boldsymbol{U}=\boldsymbol{U}$
ロ $\mathrm{A} \cup \mathrm{A}=$

Identity law
Domination law

Properties Of Set Union

$\square A \cup \varnothing=A$
$\square \mathrm{A} \cup \boldsymbol{U}=\boldsymbol{U}$
$\square A \cup A=A$

Identity law
Domination law Idempotent law

Properties Of Set Union

$\square A \cup \varnothing=A$
$\square \mathrm{A} \cup \boldsymbol{U}=\boldsymbol{U}$
$\square A \cup A=A$
$\square A \cup B=B \cup A$

Identity law
Domination law Idempotent law

Commutative law

Properties Of Set Intersection

ㅁ $\mathrm{A} \cap \boldsymbol{U}=$
ロ $A \cap \varnothing=$

- $A \cap A=$

Properties Of Set Intersection

$\square \mathrm{A} \cap \boldsymbol{U}=\mathrm{A}$
Identity law
ロ $A \cap \varnothing=$

- $A \cap A=$

Properties Of Set Intersection

ㅁ $\mathrm{A} \cap \boldsymbol{U}=\mathrm{A}$
$\square A \cap \varnothing=\varnothing$

- $A \cap A=$

Identity law
Domination law

Properties Of Set Intersection

$\square \mathrm{A} \cap \boldsymbol{U}=\mathrm{A}$
$\square A \cap \varnothing=\varnothing$
$\square A \cap A=A$

Identity law
Domination law
Idempotent law

Properties Of Set Intersection

$\square \mathrm{A} \cap \boldsymbol{U}=\mathrm{A}$
$\square A \cap \varnothing=\varnothing$
$\square A \cap A=A$
$\square A \cap B=B \cap A$

Identity law
Domination law
Idempotent law
Commutative law

Propositions

A proposition is a statement that is either true or false

Examples of Proposition
(Eggs are blue) $=p$
(I am a human) = q

$$
(2+3=5)=r
$$

Examples of things that aren't Proposition

What are you doing Friday?
What is $3+3 ?$
Sit down!

Propositions

A proposition is a statement that is either true or false

When dealing with propositions, we abstract away difficulties of defining, and we can just give them letters (define variables), like p

Propositions

A proposition, p, is a statement that is either true or false. "True" or "False" is considered the "truth value" of p.

https://www.cs.virginia.edu/luther/2102/F2020/symbols.html

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	T or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction

Propositions

A proposition is a statement that is either true or false

We can modify, combine and relate propositions with connectives:

Propositions

A proposition is a statement that is either true or false

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"
$\square=\{x \in U \mid x \in S \wedge x \notin T\}$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

$$
S \backslash T=\{x \in U \mid x \in S \wedge x \notin T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"
$\square=\{x \in U \mid x \in S \vee x \in T\}$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

$$
S \cup T=\{x \in U \mid x \in S \vee x \in T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- $ᄀ$ is "not"

$$
=\{x \in U \mid x \in S \wedge x \in T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

$$
S \cap T=\{x \in U \mid x \in S \wedge x \in T\}
$$

Looks Familiar?

We can modify, combine and relate propositions with connectives:

- V is "or"
- \wedge is "and"
- ᄀ is "not"

Set theory is a branch of mathematical logic. So it makes sense to use logical language and symbols to describe sets.

"Not" operator

How to define:

Make a truth table

"Not" operator

p	$\neg p$
T	F
F	T

"And" operator

p	q	$p \wedge q$
T	T	T
T	F	F
F	T	F
F	F	F

"Or" operator

"Or" operator

p	q	$p \vee q$
T	T	T
T	F	T
F	T	T
F	F	F

"Implies" operator

If p, then q

The conditional $p \rightarrow q$ can be expressed by different sentences, some of them are listed below:

- p implies q
- p is a sufficient condition for q
- q is a necessary condition for p
- q follows from p
- p only if q

"Implies" operator

p	q	$p \rightarrow q$
T	T	T
T	F	F
F	T	T
F	F	T

Supose $A \subset B$ and $B \subseteq C$ are true, and $B \subseteq D$ and $D \subseteq B$ are both false. For each of the following, decide if it

- must, could, or can't be empty
- how it must relate ($\subseteq, \subset, \supseteq, \supset,=$) to the four named sets (if any)
a. $A \cap B$
b. $A \cup B$
c. $B \cap C$
d. $B \cup C$
e. $B \cap D$
f. B U D
g. $C \cap D$
h. C U D
i. $A \cap C$
j. $A \cup C$
k. $A \cap D$
l. $A \cup D$

