Sept 7 Slides

 $\Box A U \varnothing =$ $\Box A U U =$ $\Box A U A =$

 $\Box A U \varnothing = A$ $\Box A U U =$ $\Box A U A =$

Identity law

 $\Box A U \varnothing = A$ $\Box A U U = U$ $\Box A U A =$

Identity law Domination law

 $\Box A U \varnothing = A$ $\Box A U U = U$ $\Box A U A = A$

Identity law Domination law Idempotent law

 $\Box A U \varnothing = A$ $\Box A U U = U$ $\Box A U A = A$ $\Box A U B = B U A$

Identity law Domination law Idempotent law Commutative law

 $\square A \cap U =$

□ A ∩ Ø =

□ A ∩ A =

 $\Box A \cap U = A$

Identity law

□ A ∩ Ø =

 $\square A \cap A =$

 $\Box A \cap U = A$

 $\Box A \cap \emptyset = \emptyset$

Identity law

Domination law

 $\square A \cap A =$

 $\Box A \cap U = A$

 $\Box A \cap \emptyset = \emptyset$

 $\Box A \cap A = A$

Identity law

Domination law

Idempotent law

- $\Box \mathsf{A} \cap U = \mathsf{A}$
- $\Box A \cap \emptyset = \emptyset$
- $\Box A \cap A = A$
- $\Box A \cap B = B \cap A$

Identity law

Domination law

Idempotent law

Commutative law

Propositions A proposition is a statement that is either true or false

Examples of Proposition

(Eggs are blue) = *p*

(I am a human) = q

(2 + 3 = 5) = r

Examples of things that aren't Proposition

What are you doing Friday?

What is 3 + 3?

Sit down!

A proposition is a statement that is either true or false

When dealing with propositions, we abstract away difficulties of defining, and we can just give them letters (define variables), like *p*

A proposition, *p*, is a statement that is either true or false. "True" or "False" is considered the "truth value" of *p*.

https://www.cs.virginia.edu/luther/2102/F2020/symbols.html

Concept	Java/C	Python	This class	Bitwise	Other
true	true	True	op or 1	-1	T, tautology
false	false	False	\perp or 0	0	F, contradiction

A proposition is a statement that is either true or false

A proposition is a statement that is either true or false

- V is "or"
- Λ is "and"
- ¬ is "not"

- \bullet V is "or"
- ∧ is "and"
- ¬ is "not"

$$= \{ x \in U \mid x \in S \land x \not\in T \}$$

We can modify, combine and relate propositions with *connectives:*

- V is "or"
- Λ is "and"
- ¬ is "not"

$S \setminus T = \{ x \in U \mid x \in S \land x \notin T \}$

- \bullet V is "or"
- ∧ is "and"
- ¬ is "not"

$$= \{ x \in U \mid x \in S \lor x \in T \}$$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- Λ is "and"
- ¬ is "not"

$S \cup T = \{x \in U \mid x \in S \lor x \in T\}$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- Λ is "and"
- ¬ is "not"

$= \{ x \in U \mid x \in S \land x \in T \}$

We can modify, combine and relate propositions with *connectives:*

- \bullet V is "or"
- Λ is "and"
- ¬ is "not"

$S \cap T = \{ x \in U \mid x \in S \land x \in T \}$

We can modify, combine and relate propositions with *connectives:*

- V is "or"
- Λ is "and"
- ¬ is "not"

Set theory is a branch of mathematical logic. So it makes sense to use logical language and symbols to describe sets.

"Not" operator

How to define:

Make a truth table

"Not" operator

"And" operator

"And" operator

p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

"Or" operator

"Or" operator

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

"Implies" operator

If p, then q

The conditional $p \rightarrow q$ can be expressed by different sentences, some of them are listed below:

- p implies q
- p is a sufficient condition for q
- q is a necessary condition for p
- q follows from p
- p only if q

"Implies" operator

Supose A \subset B and B \subseteq C are true, and B \subseteq D and D \subseteq B are both false.

For each of the following, decide if it

- must, could, or can't be empty - how it must relate (\subseteq , \subset , \supseteq , \supset , =) to the four named sets (if any)

0

a. A n B

- b. A u B
- c. B n C
- d. B u C
- e. B n D
- f. B u D

g. C n D

h. C u D i. A n C j. A u C k. A n D l. A u D