
Udacity CS101: Building a Search Engine

Unit 2: How to repeat
Finding all the links on a page

Procedures and Control
(Introduction to Web Browsers)
Procedural Abstraction (Motivating Procedures)
Procedures (Introducing Procedures)

Q-1: Quiz (Procedure Code)
Q-2: Quiz (Output)

Return Statement (Return Statement)
Q-3: Quiz (Return Statment)

Using Procedures (Using Procedures)
Q-4: Quiz (Inc Procedure)
Q-5: Quiz (Sum Procedure)
Q-6: Quiz (Sum Procedure with a Return Statement)
Q-7: Quiz (Square)
Q-8: Quiz (Sum of Three)
Q-9: Quiz (Abbaize)
Q-10: Quiz (Find Second)

Making Decisions (Equality Comparisons)
Comparison Operators
Q-11: Quiz (Equality Comparisons)

If Statements (If Statements)
Q-12: Quiz (If Statements)

Else Expressions (Is Friend)
Q-13: Quiz (Is Friend)
Q-14: Quiz (More Friends)

Or Expressions (Or)
Q-15: Quiz (Biggest)
Alan Turing# (Biggest)

While Loops (While Loops)
Q-16: Quiz (While Loops)
Q-17: Quiz (While Loops-2)
Q-18: Quiz (Print Numbers)

Baby Blocks (Factoral)
Q-19: Quiz (Factorial)

Break (Break)
Q-20: Quiz (Break)

Multiple Assignment (Multiple Assignment)
Q-21: Quiz (Multiple Assignments)

No Links (No Links)
Q-22: Quiz (No Links)

Print All Links (Print All links)
Q-23: Quiz (Print All Links)

Answer Key

1

Procedures and Control
(Introduction to Web Browsers)
In Unit 1, you wrote a program to extract the first link from a web page. The next step towards
building your search engine is to extract all of the links from a web page. In order to write a
program to extract all of the links, you need to know these two key concepts:

1. Procedures - a way to package code so it can be reused with different inputs.

2. Control - a way to have the computer execute different instructions depending on the data
(instead of just executing instructions one after the other).

Recall this code from then end of Unit 1:

 page = ...contents from some web page
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 print url

This finds and prints the first link on the page. To keep going, we could update the value of page to
be the characters from the end_quote, and repeat the same code again:

 page = page[end_quote:]
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 print url

 page = page[end_quote:]
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 print url

This code will print out the next two links on the web page. Clearly, this is tedious work. The
reason we have computers is to avoid having to do tedious, mechanical work! In addition to being
tedious, repeating the same code over and over again like this won’t work well because some pages
only have a few links while other pages will have more links than the number of repetitions.

In this unit, you will learn three important programming constructs: procedures, if statements, and
while loops. Procedures, also known in Python as “functions,” enable you to abstract code from
its inputs; if statements allow you to write code that executes differently depending on the data;
and while loops provide a convenient way to repeat the same operations many times. You will
combine these to solve the problem of finding all of the links on a web page.

2

Procedural Abstraction (Motivating Procedures)
Procedural abstraction is a way to write code once that works on any number of different data
values. By turning our code into a procedure, we can use that code over and over again with
different inputs to get different behaviors.

Procedures (Introducing Procedures)
A procedure takes in inputs, does some processing, and produces outputs.

For example, the + operator is a procedure where the inputs are two numbers and the output is
the sum of those two numbers. The + operator looks a little different from the procedures we will
define since it is built-in to Python with a special operator syntax. In this unit you will learn how to
write and use your own procedures.

Here is the Python grammar for writing a procedure:

 def <name>(<parameters>):
 <block>

The keyword def is short for “define”.

<name> is the name of a procedure. Just like the name of a variable, it can be any string that starts
with a letter and followed by letters, number and underscores.

<parameters> are the inputs to the procedure. A parameter is a list of zero or more
names separated by commas: <name>, <name>,... Remember that when you name your
parameters, it is more beneficial to use descriptive names that remind you of what they mean.
Procedures can have any number of inputs. If there are no inputs, the parameter list is an empty set
of closed parentheses: ().

After the parameter list, there is a : (colon) to end the definition header.

The body of the procedure is a <block>, which is the code that implements the procedure. The
block is indented inside the definition. Proper indentation tells the interpreter when it has reached
the end of the procedure definition.

Let’s consider how to turn the code for finding the first link into a get_next_target procedure
that finds the next link target in the page contents. Here is the original code:

 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]

Next, to make this a procedure, we need to determine what the inputs and outputs are.

Q-1: Quiz (Procedure Code)
What are the inputs for the procedure, get_next_target?

3

a. a number giving position of start of link
b. a number giving position of start of next quote
c. a string giving contents of the rest of the web page
d. a number giving position of start of link and a string giving page contents

Answer to Q-1

Q-2: Quiz (Output)
What should the outputs be for get_next_target?

a. a string giving the value of the next target url (url)
b. url, page
c. url, end_quote
d. url, start_link

Answer to Q-2

Return Statement (Return Statement)

To make the get_next_target procedure, we first add a procedure header and indent our
existing code in a block:

 def get_next_target(page):
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]

We can change the name of the parameter page to s. This is more descriptive since the procedure
can work on any string. After we rename the parameter, we also need to change the name
wherever it is used in the block:

 def get_next_target(s):
 start_link = s.find('<a href=')
 start_quote = s.find('"', start_link)
 end_quote = s.find('"', start_quote + 1)
 url = s[start_quote + 1:end_quote]

To finish the procedure, we need to produce the outputs. To do this, introduce a new Python
statement called return. The syntax for return is:

 return <expression>, <expression>, ...

A return statement can have any number of expressions. The values of these expressions are the
outputs of the procedure.

A return statement can also have no expressions at all, which means the procedure procedures no
output. This may seem silly, but in fact it is quite useful. Often, we want to define procedures for
their side-effects, not just for their outputs. Side-effects are are visible, such as the printing done by

4

a print statement, but are not the outputs of the procedure.

Q-3: Quiz (Return Statment)
Complete the get_next_target procedure by filling in the return statement that
produces the desired outputs.

 def get_next_target(s):
 start_link = s.find('<a href=')
 start_quote = s.find('"', start_link)
 end_quote = s.find('"', start_quote + 1)
 url = s[start_quote + 1:end_quote]
 return ________

Answer to Q-3

Using Procedures (Using Procedures)
In order to use a procedure, you need the name of the procedure, followed by a left parenthesis,
a list of the procedure’s inputs (sometimes called operands or arguments), closed by right
parenthesis:

 <procedure>(<input>,<input>, …)

For example, consider the rest_of_string procedure defined as:

 def rest_of_string(s):
 return s[1:]

To use this procedure we need to pass in one input, corresponding to the parameter s:

 print rest_of_string('audacity')
 udacity

We can see what is going on by adding a print statement in the procedure body:

 def rest_of_string(s):
 print 'Here I am in rest_of_string!'
 return s[1:]

 print rest_of_string('audacity')
 Here I am rest_of_string!
 udacity

You can do anything you want with the result of a procedure, for example you can store it in a
variable.

 def rest_of_string(s):
 print 'Here I am in rest_of_string!'
 return s[1:]

5

 s = rest_of_string('audacity')
 print s
 Here I am rest_of_string!
 udacity

However, see what happens here:

 t = rest_of_string('audacity')
 print s
 Here I am rest_of_string!

 Traceback (most recent all last):
 File "/code/knowvm/input/test.py", line 7, in <module>
 print s
 NameError: name 's' is not defined

An error is returned because the variable s is not defined outside the block of the procedure.

Think of procedures as mapping inputs to outputs. This is similar to a mathematical function.
Indeed, many people call procedures in Python like the ones we are defining “functions”. The
reason I prefer to call them procedures is that they are quite different from mathematical functions.
The main differences are:

● A mathematical function always produces the same output given the same inputs. This is
not necessarily the case for a Python procedure, which can produce different outputs for
the same inputs depending on other state (we will see examples in Unit 3).

● A mathematical function is a pure abstraction that has no associated cost. The cost of
executing a Python procedure depends on how it is implemented. (We will discuss how
computer scientists think about the cost of procedures in Unit 5.)

● A mathematical function only maps inputs to outputs. A Python procedure can also produce
side-effects, like printing.

Procedures are a very important concept and the core of programming is breaking problems into
procedures, and implementing those procedures.

Q-

4: Quiz (Inc Procedure)
What does the inc procedure defined below do?
 def inc(n):
 return n + 1

a. Nothing
b. Takes a number as input, and outputs that number plus one
c. Takes a number as input, and outputs the same number
d. Takes two numbers as inputs, and outputs their sum

Answer to Q-4

6

Q-5: Quiz (Sum Procedure)
What does the sum procedure defined below do?

 def sum(a, b):
 a = a + b

a. Nothing
b. Takes two numbers as its inputs, and outputs their sum
c. Takes two strings as its inputs, and outputs the concatenation of the two strings
d. Takes two numbers as its inputs, and changes the value of the first input to be the sum of

the two number

Answer to Q-5

Q-6: Quiz (Sum Procedure with a Return Statement)
What does the sum procedure defined below do?

 def sum(a,b):
 a = a + b
 return a

a. Takes two numbers as its inputs, and outputs their sum.
b. Takes two strings as its inputs, and outputs the concatenation of the two strings.
c. Takes two numbers as its inputs, and changes the value of the first input to be the sum of

the two number.

Answer to Q-6

Q-7: Quiz (Square)
Define a procedure, square, that takes one number as its input, and outputs the square of that
number (result of multiplying the number by itself).

For example,

 print square(5)
 25

Answer to Q-7

Q-8: Quiz (Sum of Three)
Define a procedure, sum3, that takes three inputs, and outputs the sum of
the three input numbers.

 print sum3(1, 2, 3) → 6

Answer to Q-8

7

Q-9: Quiz (Abbaize)
Define a procedure, abbaize, that takes two strings as its input, and outputs
a string that is the first input followed by two repetitions of the
second input, followed by the first input.

 abbaize('a', 'b') → 'abba'
 abbaize('dog', 'cat') → 'dogcatcatdog'

Answer to Q-9

Q-10: Quiz (Find Second)
Define a procedure, find_second, that takes two strings as its inputs: a
search string and a target string. It should output a number located at the
second occurrence of the target string within the search string.

Example:

 danton = "De l'audace, encore de l'audace, toujours de l'audace."
 print find_second(danton, 'audace')
 25

Answer to Q-10

Making Decisions (Equality Comparisons)
Everything so far has been limited. So far, your programs are only able to do the same thing on
all data and you cannot do anything that depends on what the data is. Now, let’s figure out a way
to make code behave differently based on decisions. To do so we want to find a way to make
comparisons, which will give you a way to test and ultimately allow your program to decide what to
do.

Comparison Operators
Python provides several operators for making comparisons:

< less than
> greater than
<= less than or equal to
== equal to
!= not equal to

All of these operators act on numbers, for example:

<number> <operator> <number>

The output of a comparison is a Boolean: True or False.

Here are some examples:

 print 2 < 3

8

 True

 print 21 < 3
 False

You can also make comparisons using expressions:

 print 7 * 3 < 21
 False

 print 7 * 3 != 21
 False

Note the equality is done using two equals signs (double ==), not a single =:

 print 7 * 3 == 21
 True

Q-11: Quiz (Equality Comparisons)
Why is the equality comparison done using == instead of =?

a. Because = means approximately equal.
b. Because not equal uses two characters !=.
c. Because Guido (van Rossum, the creator of Python) really likes = signs.
d. Because = means assignment.
e. It doesn’t matter, we can use either == or =.

Answer to Q-11

If Statements (If Statements)
An if statement provides a way to control what code executes based on the result of a test
expression. Here is the grammar of the if statement:

 if <TestExpression>:
 <block>
In this statement, the code in the <block> runs only if the value of the test expression is True.
Similar to procedures, the end of the if statement block is determined by the indentation.

Here is an example where we use an if statement to define a procedure that returns the absolute
value of its input:

 def absolute(x):
 if x < 0:
 x = -x
 return x

9

Q-12: Quiz (If Statements)
Define a procedure, bigger, that takes in two numbers as inputs, and outputs the greater of the two
inputs.

 bigger(2, 7) → 7
 bigger(3, 2) → 3
 bigger(3, 3) → 3

Answer to Q-12

Else Expressions (Is Friend)
You can use an else clause in addition to an if statement to provide alternative code that will
execute when the test expression is false. The test expression determines whether to execute the
block inside the if statement or the block inside the else statement:

 if <TestExpression>:
 <block>
 else:
 <block>

Using else, we can define bigger in a more symmetrical way:

 def bigger(a, b):
 if a > b:
 return a
 else:
 return b

Here is another way to write this:

 def bigger(a, b):
 if a > b:
 r = a
 else:
 r = b
 return r

Q-13: Quiz (Is Friend)
Define a procedure, is_friend, that takes a string as its input, and outputs
a Boolean indicating if the input string is the name of a friend.
Assume I am friends with everyone whose name starts with D and no one else.

 print is_friend('Diane') → True
 print is_friend('Fred') → False

Answer to Q-13

Q-14: Quiz (More Friends)
10

Define a procedure, is_friend, that takes a string as its input, and outputs
a Boolean indicating if the input string is the name of a friend.
Assume I am friends with everyone whose name starts with either D or N,
but no one else.

 print is_friend('Diane') → True
 print is_friend('Ned') → True

Answer to Q-14

Or Expressions (Or)
An or expression gives the logical or (disjunction) of two operands. If the first expression evaluates
to True, the value is True and the second expression is not evaluated. If the value of the first
expression evaluates to False then the value of the or is the value of the second expression.

 <Expression> or <Expression>

Here are a few examples:

 print True or False
 True
 print False or True
 True
 print True or True
 True
 print False or False
 False

An important difference between an or expression and other operators is that an or expression
does not necessarily evaluate both of its operand expressions. For example:

 print True or this_is_an_error

 True

Even though this_is_an_error would produce an error because the variable is not defined, the
or expression does not produce an error! This is because the second operand expression of an
or is only evaluated if the first expression evaluates to False. When the first operand expression
evaluates to True, the output of the or expression must be True regardless of the value of the
second operand expression. The Python rules of evaluation require that the second operand
expression is not even evaluated in cases where the value of the first operand is True.

Q-15: Quiz (Biggest)
Define a procedure, biggest, that takes three numbers as inputs, and outputs the greatest of the
three numbers.

 biggest (6, 2, 3) → 6
 biggest (6, 2, 7) → 7
 biggest (6, 9, 3) → 9

11

Answer to Q-

15
 This remarkable claim was proven by Alan Turing in the 1930s.

Alan Turing1 (Biggest)
Alan Turing was born in London in 1912, and developed his computing model while at Cambridge
in the 1930s. He developed the model to solve a famous problem posed by David Hilbert in 1928.

The problem, known as the Entscheidungsproblem (German for “decision problem”) asked for an
algorithm that could determine the truth or falsehood of a mathematical statement. To solve the
problem, Turing first needed a formal model of an algorithm. For this, he invented the machine
model that is now known as a Turing machine and defined an algorithm as any Turing Machine that
is guaranteed to eventually halt on any input.

With the model, Turing was able to show that any machine could be simulated by a universal
machine with a few very simple operations. The operations he used were slightly different from
what we have covered, but can be viewed as equivalent to being able to define and use procedures,
being able to make decisions using if, and being able to do simple arithmetic and comparisons.
Turing also proved that there are some problems that cannot be solved by any algorithm. We will
not prove that in this course, but will soon see the most famous example: it is impossible for a
program to determine in general if another program will run forever or eventually finish executing.

After publishing his solution to the Entscheidungsproblem in 1936, Turing went to Princeton
and studied with Alonzo Church (inventor of the Lambda calculus, the basis of the programming
language LISP, which is a major influence on Python).

1 This biographical sketch is adapted from David Evans, Introduction to Computing: Explorations in Language,
Logic, and Machines, available free from http://www.computingbook.org.

12

With the start of World War II, Turing joined the highly secret British effort to break Nazi codes at
Bletchley Park. Turing was instrumental in breaking the Enigma code which was used by the Nazi's
to communicate with field units and submarines. Turing designed an electro-mechanical machine
known as a bombe for efficiently searching possible keys to decrypt Enigma-encrypted messages.

The machines used logical operations to search the possible rotor settings on the Enigma to find the
settings that were most likely to have generated an intercepted encrypted message. Bletchley Park
was able to break thousands of Enigma messages during the war. The Allies used the knowledge
gained from them to avoid Nazi submarines and gain a tremendous tactical advantage.

After the war, Turing continued to make both practical and theoretical contributions to computer
science. Among other things, he worked on designing general-purpose computing machines and
published a paper speculating on the ability of computers to exhibit intelligence. Turing introduced
a test for machine intelligence (now known as the Turing Test and the inspiration behind the
annoying “CAPTCHA” images that challenge you to prove you are a human before submitting a web
form) based on a machines ability to impersonate a human and speculated that machines would be
able to pass the test within 50 years (that is, by the year 2000). Turing also studied morphogenesis
(how biological systems grow) including why Fibonacci numbers (to come in Unit 6) appear so
often in plants.

In 1952, Turing's house was broken into, and Turing reported the crime to the police. The
investigation revealed that Turing was a homosexual, which at the time was considered a crime in
Britain. Turing did not attempt to hide his homosexuality. He was convicted and given a choice
between serving time in prison and taking hormone treatments. He accepted the treatments, and
his security clearance was revoked. In 1954, at the age of 41, Turing was found dead in an apparent
suicide, with a cynide-laced partially-eaten apple next to him.

The codebreaking effort at Bletchley Park was kept secret for many years after the war (Turing's
report on Enigma was not declassified until 1996), so Turing never received public recognition for
his contributions to the war effort. In September 2009, instigated by an on-line petition, British
Prime Minister Gordon Brown issued an apology for how the British government treated Alan
Turing.

While Loops (While Loops)

Loops are a way of executing something over and over.

The syntax for the while loop is very similar to the if statement:

 while <TestExpression>:
 <Block>

In contrast to an if statement where the block executes either 0 or 1 times depending on whether
the test expression is True or False, a while loop executes any number of times, continuing as

13

long as the test expression is True.

In a if statement if the test expression is True, the block executes once and then continues to the
following statment. If the test expression is False, execution jumps over the block and continues
with the following statement.

If the test expression for a while loop is True, the block is executed. Then, execution continues
by going back to the test expression again. If it still evaluates to True, the block is executed again,
and execution continues by going back to the test expression one more time. This continues as
long as the test expression evaluates to True. and again as many times as you need. Once the test
expression is False, execution jumps to the next statement. There is no guarantee that the test
expression eventually becomes False, however. The loop could keep running forever, which is
known as an infinite loop.

Here is an example while loop:

 i = 0
 while i < 10:
 print i
 i = i + 1

This code will execute the inner block as long as the test expression, while i < 10, is True.
Inside the block, it prints i and then adds 1 to i. In this example, the while loop repeats 10 times,
printing the numbers from 0 to 9. At the end of the loop, the value of i is 10.

Q-16: Quiz (While Loops)
What does this program do?

 i = 0
 while i != 10:
 i = i + 2
 print i

a. Produce an error
b. Print out the numbers from 0 to 9.
c. Print out the numbers from 1 to 9.
d. Print out the numbers from 1 to 10.
e. Run

Answer to Q-16

Q-17: Quiz (While Loops-2)
What does the following code do?

 i = 1
 while i != 10:
 i = i + 2
 print i

14

a. Produce an error.
b. Print out 2, 4, 6, 8.
c. Print out 1, 3, 5, 7, 9.
d. Print out 3, 5, 7, 9.
e. Run forever.

Answer to Q-17

Q-18: Quiz (Print Numbers)
Define a procedure, print_numbers, that takes as input a positive whole number, and prints out all
the whole numbers from 1 up to and including the input number.

 print_numbers(3)
 1
 2
 3

Answer to Q-18

Baby Blocks (Factoral)

Suppose we have four blocks and a baby. We want to know how long the baby can play with the
blocks without getting bored. The baby wants to try all of the different ways of arranging the blocks
by stacking them in a tower.

Think about the baby’s choices for the first block, she has four. Let’s say she reaches for the red
block first. When she reaches for the second block she is down to just three choices. If she stacks
the green block on top of the red block, she has two choices left, the blue block and the purple block.
Next, the baby picks the purple one. Therefore, for her fourth block, the baby only has one choice,
the blue one.

To figure out the total number of choice we want to multiply the number of choices for the first
block by the number of choices for the second block, by the number of choices for the third block,
all the way to the fourth block. The function that you are computing is factorial. For any input n,
you compute the factorial, which is the number of ways of arranging n items.

15

 factorial(n) = n · (n-1) · (n-2) · … · 2 · 1

Q-19: Quiz (Factorial)
Define a procedure, factorial, that takes one number as its input and outputs the factorial of that
number.
Answer to Q-19

Break (Break)
Break gives us a way to break out of a loop, even if the test condition is true. The typical structure
of the loop with a break looks like this:

 while <TestExpression>:
 <Code>
 if <BreakTest>:
 break # stop executing the while loop
 <More Code>
 <After While>

The break statement jumps out of the loop to <After While>.

Here is an example showing how we could rewrite print_numbers using break:

 def print_numbers(n):
 i = 1
 while True:
 if i > n:
 break
 print i
 i = i + 1

This has the same behavior as the previous implementation, except now the test condition for the
while loop is True. This is a bad example: if there is a way to write a loop without using break,
it is usually best to avoid it. We will see soon an example where it is more difficult to write the
loop without using break, since it is not clear before executing part of the block if the loop should
continue repeating.

Q-20: Quiz (Break)
Which of the following are always equivalent to:

while <T>:
 <S>

a. while <T>:

 if False:
 break
 <S>

b. while <T>:

16

 <S>
 break

c. while True:

 if <T>:
 break
 <S>

d. while <T>:
 <S>
 if <T>:
 <S>
 else:
 break

 Answer to Q-20

Multiple Assignment (Multiple Assignment)

So far we have defined a procedure to eliminate writing tedious code:

 def get_next_target(page):
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

Although you have not yet used a procedure that returns two things, it is pretty simple to do. You
can do this by having two values on the left side of an assignment statement.

Assigning multiple values on the left side of an assignment statement is called multiple
assignment. To write a multiple assignment you can put any number of names separated by
commas, an equal sign and then any number of expressions separated by commas. The number of
names and the number of expressions has to match so that the value of the first expression can be
assigned to the first name and so on.

<name1>, <name2>, … = <expression1>, <expression2>, …

Example:

a, b = 1, 2

Therefore, in order to get the two values, (url, end_quote) to return from the procedure above,
you will need to have the two variables on the left side and the procedure on the right. Here is the
syntax to do that:

url, endpos = get_next_target(page)

Q-21: Quiz (Multiple Assignments)

17

What does this do?

s, t = t, s

a. Nothing
b. Makes s and t both refer to the original value of t
c. Swaps the values of s and t
d. Error

Answer to Q-21

No Links (No Links)
There is one concern with the get_next_target procedure that has to be fixed before tackling
the problem of outputting all of the links, which is:

What should happen if the input does not have another link?

Test the code in the interpreter using a test link to print get_next_target:

 def get_next_target(page):
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

 print get_next_target('this is a link!')
 ('http://udacity.com', 37)

When you run this code you get both outputs as a tuple, that is, the link followed by the position of
the end quote. A tuple is an immutable list, meaning it cannot be modified. In the same way a list is
enumerated with brackets, a tuple definition is bounded by parenthesises.

Or you can write this using a double assignment to return just the url:

 def get_next_target(page):
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

 url, endpos = get_next_target('this is a link!')

 print url
 http://udacity.com

What happens if we pass in a page that doesn’t have a link at all?

 def get_next_target(page):

18

 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

 url, endpos = get_next_target('good')
 print url
 goo

The program returns, “goo” because when the find operation does not find what it is looking for it
returns -1. When -1 is used as an index, it eliminates the last character of the string. Compare with a
string that includes double quotes:

 def get_next_target(page):
 start_link = page.find('<a href=')
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

 url, endpos = get_next_target('Not "good" at all!')

 print url
 Not

In the end, the code above is not very useful. It is going to be very hard to tell when you get to the
last target because maybe Not could be a valid url, but we don’t know that.

Q-22: Quiz (No Links)

Think about making get_next_target more useful in the case where the input does not contain
any link. This is something you can do! Here is a hint:

 def get_next_target(page):
 start_link = page.find('<a href=') # HINT: put something into the code here

 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

 url, endpos = get_next_target('Not "good" at all!')
 print url

Modify the get_next_target procedure so that if there is a link it behaves as before, but if
there is no link tag in the input string, it outputs None, 0.

Answer to Q-22

19

Print All Links (Print All links)

At this point you have a piece of code, get_next_target, to replace a formerly
tedious program. Here is where we are so far, with a few
modifications:

 page = contents of some web page as a string
 url, end pos = get_next_target(page)
 print url
 page = page[endpos:] #replaced end_quote with endpos
 url, endpos = get_next_target(page)
 ...

This code will have to repeat and keep going until the url that’s returned is None.

So far, you have seen a way to keep going, which is a while loop. You have seen a way to test the url.
Now you have everything you need to print all the links on the page!

Q-23: Quiz (Print All Links)
In the following code, fill in the test condition for the while loop and the rest of the else statement:

 def print_all_links(page):
 while ________: # what goes as the test condition for the while?
 url, endpos = get_next_target(page)
 if url: # test whether the url you got back is None
 print url
 page = page[endpos:] # advance page to next position
 else: # if there was no valid url, then get_next_target did not
find a link then do something else. What do you need to do?

Answer to Q-23

Let’s go back to the xkcd web page we looked at earlier and try something a little more interesting.

Go to the xkcd.com home page, click view source to find the first link on the page and notice how
many links there are in the source code — quite a few.

Using your print_all_links code, print get_page and try passing in the page url, 'http://
xkcd.com/353'. Your program should return the page's source code when you run it.

 def print_all_links(page):
 while True:
 url, endpos = get_next_target(page)
 if url:
 print url
 page = page[endpos:]

20

http://xkcd.com
http://xkcd.com
http://xkcd.com

 else:
 break

 print get_page('http://xkcd.com/353')

Since we do not need the entire source code for what we are looking for, try your print_all_links
procedure to print all of the links on the xkcd.com page to print the links on the page.

 def print_all_links(page):
 while True:
 url, endpos = get_next_target(page)
 if url:
 print url
 page = page[endpos:]
 else:
 break

 print_all_links(get_page('http://xkcd.com/353'))

There are a few links that are not returned, but you will learn about those situations in the coming
units.

Congratulations! You just learned how to print all the links on a web page, every possible computer
program, and are in good shape to continue building your web browser! In the next unit you will
learn how to collect the links from a web page and do something with them.

21

http://xkcd.com
http://xkcd.com
http://xkcd.com

Answer Key

A-1: Answer

 c. a string giving contents of the rest of the web page.

One way to see this is to look at the code you are trying to replace, and identify the values that must
be known before running the code. In this case, the value of page must be known before this code
is executed since it is used on the right side of an assignment statement before it is defined.

A-2: Answer

To determine the outputs, we need to think about what is needed after the procedure. Anything
computed by the procedure that we want to use after the procedure finishes must be an output.

To answer this question, look at the code after the procedure.

 print url
 page = page[end_quote:]

Since we already know the value of page, as indicated by the fact that it is known before the
procedure was called, then the best answer is c. The reason we want end_quote as an output is
because knowing where the end of the quote is allows us to advance the page so that the next time
we look for a link target, we won’t find the same one. Instead, we assign a new value to page that
is made up of the subsequent characters in the current value of page starting from the end_quote
to skip over the link we just found.

A-3: Answer

We are looking to return two things, the value of url and the value of end_quote. Do this by just
returning those two values:

 return url, end_quote

In this example, the input to the procedure is a single string, and its outputs are a string (url) and a
number (end_quote). The inputs and outputs of procedures can be anything you want, and nearly
all the work in computing is done by passing inputs to procedures, and then using their outputs as
the inputs to other procedures.

For example, procedures in a self-driving cars use data sensed by laser range finders, cameras, and
pressure sensors as inputs, and produce outputs that control the steering and brakes on the car.

A-4: Answer

b. there is one input with an output of the input value plus one

A-5: Answer

Nothing!

22

Let's look at this in the Python interpreter:

 def sum(a,b):
 a = a + b

 print sum(1, 1)
 None

The reason the result is None is because the sum procedure does not return anything. The value
None is a special value that means that a variable has no value.

To produce a result, we need to add a return statement to the sum procedure:

 def sum(a,b):
 a = a + b
 return a

Now, when we use sum it returns the sum of its two input numbers:

 print sum(2, 123)
 125

Note that even if you pass in variables as the inputs, the values those variables refer to do not
change. For example:

 def sum(a,b):
 a = a + b

 a = 2
 b = 123
 sum(a, b)

 print a
 2

Even though the value of the parameter a is changed inside the body of the procedure, the name a
inside the procedure is different from the name a outside the procedure.

A-6: Answer

b. & c. because the plus operator works on both strings and numbers

A-7: Answer

 def square(n):
 return (n*n)

Here are some examples using square:

23

 x = 37
 print square(x)
 1369

 y = square(x)
 print square (y)
 1874161

The last example is the same as:

 x = 37
 print square(square(x))
 1874161

This is an example of procedure composition. We compose procedures by using the outputs of
one procedure as the inputs of the next procedure. In this case, we use the output of square(x)as
the next input to square.

Connecting procedures using composition is a very powerful idea. Most of the work of programs is
done by composing procedures.

A-8: Answer

 def sum3 (a, b, c):
 return a + b + c
A-9: Answer

 def abbaize(a, b)
 return a + b + b + a

 print abbaize('dog', 'cat')
 dogcatcatdog

A-10: Answer

 def find_second(search, target):
 first = search.find(target)
 second = search.find(target, first + 1)
 return second

You could eliminate the variable second:

 def find_second(search, target):
 first = search.find(target)
 return search.find(target, first + 1)

You could even reduce this to one line by eliminating the variable first:

 def find_second(search, target):
 return search.find(target, search.find(target) + 1)

A-11: Answer

24

The correct answer is d. The meaning of = (assignment) and == (equality comparison) are very
different:

 i = 21 assigns 21 to i
 i == 21 is a comparison that will output True or False

A-12: Answer

 def bigger(a, b):
 if a > b:
 return a
 return b

A-13: Answer

 def is_friend(name):
 if name [0] == 'D'
 return True
 else:
 return False

There is no real need to use if statement here, since we can just return the result of the comparison
directly:

 def is_friend(name):
 return name [0] == 'D'

A-14: Answer

 def is_friend(name):
 if name[0] == 'D':
 return True
 if name [0] == 'N':
 return True
 return False

Another way to define this would be to use an else clause:

 def is_friend(name):
 if name[0] == 'D':
 return True
 else:
 if name [0] == 'N':
 return True
 else:
 return False
Note how the inner if statement is intended inside the else clause.

25

A third way of writing this would be to use an or expression, which we will describe next:

def is_friend(name):
 if name[0] == 'D' or name[0] == 'N'

A-15: Answer

 def biggest (a, b, c):
 if a > b:
 if a > c:
 return a
 else:
 return c
 else: # b >= a
 if b > c:
 return b
 else: # c >=b >= a
 return c

Another way to answer this that would be shorter and simpler is to use the bigger procedure we
defined earlier:

 def bigger (a, b):
 if a > b:
 return a
 else:
 return b

We can define biggest by composing two calls to

bigger
The code below is a much shorter way of defining biggest, taking advantage of the earlier definition
of bigger:

26

 def biggest(a, b, c):
 return bigger(bigger(a, b), c)

An even simpler way to define bigger would be to use Python’s built-in max operator, which works
on any number of inputs and outputs the maximum value. We could then define:

 def biggest(a, b, c):
 return max(a, b, c)

Of course, if you already knew about the built-in max operator, there would be no need to define
biggest at all. The point is you know enough now to define it yourself!

Its even better than that: you actually know enough already to write every possible computer
program!

A-16: Answer

d. Print out the numbers from 1 to 10.

A-17: Answer

e. This will run forever because the test condition of the loop is always True.

A-18: Answer

 def print_numbers(n):
 i = 1
 while i <= n:
 print i
 i = i + 1

 print_numbers(3)
 1
 2
 3

Another approach:

 def print_numbers(n):
 i = 0
 while i < n:
 i = i + 1
 print i

 print_numbers(3)
 1
 2
 3
A-19: Answer

Here is one solution:

27

 def factorial (n):
 result = 1
 while n >=1 :
 result = result * n
 n = n -1
 return result

 print factorial(4)
 24

This result states that there are 24 different ways for the baby to arrange the blocks. You could
also use this program to figure out how many different ways to arrange a deck of 52 playing cards,
which is a really big number. Give it a try in your interpreter.

A-20: Answer

The answers are a and d.

A-21: Answer

The answer is c, the multiple assignment expression swaps the value of s and t. Think about how
this is different from writing two assignment statements. In the multiple assignment expression,
both of the values on the right side get evaluated before they get their assignments.

A-22: Answer

Write an if statement that will return None for the url when no hyperlink is found in the page.

 def get_next_target(page):
 start_link = page.find('<a href=')
 if start_link == -1:
 return None, 0
 start_quote = page.find('"', start_link)
 end_quote = page.find('"', start_quote + 1)
 url = page[start_quote + 1:end_quote]
 return url, end_quote

 url, endpos = get_next_target('Not "good" at all!'>link!
 if url:
 print "Here!"
 else:
 print "Not here!"
 print url

 Not here!

When a string, such as url, is used as the condition in the if statement, the condition is evaluated
as True for any nonempty string and False whenever the string is empty or the condition
evaluates to None.

A-23: Answer

28

 def print_all_links(page):
 while True:
 url, endpos = get_next_target(page)
 if url:
 print url
 page = page[endpos
 else:
 break

 print_all_links('this link 1 is link
2 a link 3')
 test1
 test2
 test3

29

