
Udacity CS101: Building a Search Engine
Unit 6: How to Have Infinite Power

Infinite Power
Long Words

Q6-1: Long Words
Counter

Q6-2: Counter
Q6-3: Expanding our Grammar

Recursive Definitions
Ancestors
Recursive Procedures
Palindromes

Q6-6: Palindromes
Recursive v. Iterative
Bunnies

Q6-7: Bunnies
Divide and Be Conquered

Q6-8: Counting Calls
Q6-9: Faster Fibonacci

Ranking Web Pages
Popularity

Q6-10: Good Definitions
Circular Definitions

Q6-11: Circular Definitions
Relaxation Algorithm (Relaxation)
Page Rank
Altavista

Q6-13: Altavista
Urank

Q6-14: Implementing Urank
Computing Page Rank
Formal Calculations
Computer Rank

Q6-15: Finishing Urank
Search Engine
Answer Key

1

Infinite Power

Welcome to unit 6! After this unit you will have learned all of the technical aspects that you will be
tested on in the final exam. Unit 7 will consist of field trips and interviews, which will put what you
have learned in context.

The big idea that will be introduced in unit 6 is recursive definitions, which you will learn how to
use as a method for increasing your page ranking – being able to find the best page to respond to
the query. The real goal of this unit is to give you infinite power!

Recall, that in unit 2 when you learned about procedures, you were told that the if statement
gave you enough to write every possible computer program, which is infinitely powerful. Then, you
learned how to use the while loop to go on. If you were infinitely powerful just knowing the if
statement then you should not have needed to learn the while loop. You should have been able to
build it from the things you have already seen – and it turns out that you can!

In this unit you will learn how to build up your own powerful control structures without using
anything other than procedures. You will see that you can build up these control structures, as
powerful as the while loop, from nothing but the procedures, if, and arithmetic and comparison
operations that you learned in unit 2.

The point of learning this is not to be able to replace procedures, but to learn a new way of thinking
called recursive definitions, which is a very powerful tool for solving problems.

2

Long Words

Q6-1: Long Words
This is kind of a trick quiz. Don’t worry if you’re not a native English speaker. This quiz is just as
hard for them as it is for you!

What's the longest word in the English language?

a. honorificabilitudinitatibus
b. antidisestablishmentarianism
c. hippopotomonstrosesquippedaliophobia
d. pneumonoultramicroscopicsilicovolcanoconiosis
e. None of the above

Answer to Q6-1

3

Counter
A word is something that has meaning that is understood by the speakers of that words language.
A word could be defined as what is in a dictionary, but there are a lot of things that are words, but
that are not in the dictionary.

There is a rule that says that for a word, you can make a new word by adding counter in front of
the old one. The notation used is the BNF (Backus Naur Form) replacement grammar, which was
introduced in unit 1. If you need a refresher, please see unit 1, sections 9-11. Recall that the basic
property of a BNF grammar is to replace what is on the left by what is on the right.

Word counter-Word

The meaning of the new word is something that goes against, or counter to the original word.

If you start with the word intelligence, (intelligence as in spycraft not smart), you can use the rule
to replace intelligence with counter-intelligence, which means trying the thwart the intelligence of
the enemy.

You can continue, replacing counter-intelligence with counter-counter-intelligence , which means
trying to thwart the enemy's counter-intelligence. Repeating this again, you get a word that isn’t
used but that still has a sensible meaning – counter-counter-counter-intelligence.

Word counter-Word
intelligence

counter-intelligence
counter-counter-intelligence

counter-counter-counter-intelligence

4

One of the long words in the first quiz, hippopotomonstrosesquippedaliophobia, means fear of long
words. If you know what a word means, even if you’ve never seen counter in front of it, you can
guess the meaning. Counter-hippopotomonstrosesquippedaliophobia means something that goes
against the fear of long words. It could be a medication that can cure someone from the fear of long
words.

If you add another counter in front of counter-hippopotomonstrosesquippedaliophobia, then you
get counter-counter-hippopotomonstrosesquippedaliophobia, which is something that goes against
counter-hippopotomonstrosesquippedaliophobia. Maybe coffee stops the medication from working
and so coffee is a counter-counter-hippopotomonstrosesquippedaliophobia!

Q6-2: Counter
If the only rule we have for making words is this one:

Word counter-Word

how many words can we make, starting from Word.

a. None
b. 1
c. 2
d. Infinitely Many

Answer to Q6-2

5

Q6-3: Expanding our Grammar
For this quiz, an extra rule is added.

How many different words can we make starting from Word using only these two rules:

Word counter-Word
Word hippopotomonstrosesquippedaliophobia

a) None
b) 1
c) 2
d) Infinitely Many

Answer to Q6-3

Recursive Definitions
Recursive definitions work for things other than words, but you’re probably most familiar with
them from language. You will learn how to use them in procedures and in later courses you will
see how to use them to define data structures. A lot of things in computing are defined in terms of
recursive definitions.

A recursive definition has two parts: the base case and the recursive case.

In the previous example, with respect to Word, the second rule:

Word hippopotomonstrosesquippedaliophobia

was the base case. It is a starting point and it is important that it is not defined in terms of itself.
For programs it is usually going to be the smallest input, or the simplest input. The base case must
be something that you already know how to define. You must already know the answer and not
need to do anything to work it out.

The recursive case is defined in terms of itself, but not itself exactly. It is defined in terms of a
smaller version of itself, as progress must be made towards the base case. You will see what this
means in programs soon, but first another example – not in terms of a program – to get a better idea
of how things can be defined recursively.

6

Ancestors
How can you define who your ancestors are?

Your parents are your ancestors, but they are not your only ancestors. Your parents have parents
– your grandparents, who are also your ancestors. Your grandparents also have parents who are
your ancestors too, and so on.

Q6-4: Ancestors
Which of these is the best definition of ancestors?

a. Ancestor Parent of Ancestor

b. Ancestor Parent
 Ancestor Parent of Ancestor
c. Ancestor Parent
 Ancestor Parent of Parent
 Ancestor Parent of Parent of Ancestor

Answer to Q6-4

7

8

Recursive Procedures
You have seen how to use recursive definitions to make Words and define concepts like Ancestors.
Now you’ll see how to use recursive definitions to define a procedure. In unit 2, the factorial was
defined as the number of ways to arrange items, which means that the input is . This can be
calculated as:

This equation is not a very precise mathematical definition because of the dot, dot, dot. Humans
understand it correctly, but it’s not precise mathematically. Using a recursive definition allows a
factorial to be defined precisely. For this, a base case is needed. This should be the simplest input.
It is something for which the answer is already known. For factorial and for many procedures
involving numbers, the simplest input is 0. The factorial of 0 is defined as 1, that is:

,

which is the base case.

9

In the imprecise definition:

the product:

is just the factorial of

that is:

This means you can write the recursive case as:

for any integer ,

10

It makes sense when you think of the way to arrange items. There are ways to pick the first

item, and then there are items remaining. There are ways to arrange these
 items.

Base case:

Recursive case: for

Q6-5: Recursive Factorial

Define a procedure, factorial, that takes a natural number as its input, and outputs the number of
ways to arrange the input number of items.

You’ve already seen how to do this using a while loop. Your goal here is to define that procedure
without using a while loop, that is, to define it using a recursive definition.

Note that a natural number is defined to be a positive whole number.

Answer to Q6-5

11

Palindromes
Here’s another example of defining a recursive procedure. A palindrome is a string that reads the
same way forwards and backwards.

For example: String ‘level’ is a palindrome (if you read ‘level’ forwards, you get ‘level’ and if you
read it backwards, you get exactly the same string). Some other typical examples of palindromes
include:

● Any single letter is a palindrome. For e.g. ‘a’ (If you read ‘a’ forwards, you get ‘a’ and if you
read ‘a’ backwards, you again get ‘a’)

● An empty string is also a palindrome (i.e. ‘’). If you read empty string ‘’ forwards, you get the
empty string and if you read empty string backwards, you get an empty string.

Additionally:

● http://norvig.com/palindrome.html: This is an encyclopediac text on this topic by Prof.
Peter Norvig.

● http://en.wikipedia.org/wiki/Palindrome#Long_palindromes: You might also want to
include some interesting palindromes/facts from this Wikipedia page.

12

http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://norvig.com/palindrome.html
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes
http://en.wikipedia.org/wiki/Palindrome#Long_palindromes

Q6-6: Palindromes
Define a procedure, is_palidrome, that takes as input a string, and outputs a Boolean to indicate if
the input string is a palindrome.

First, try to think on your own and define the procedure that tests whether an input string is a
palindrome or not. This is a pretty tough question. There are easy ways to reverse the string and
check to see if it is same as the original string in Python. But since you have not studied them yet in
this course, write this procedure using what you already know about Python. Here are some hints
for defining this procedure:

● You might have already noticed that there is one simple case (i.e. empty string ‘') where
you know that the string is a palindrome. So, this will be your base case. If the input to the
procedure, is_palindrome is an empty string, the result of is_palindrome is True.
Note: When you write recursive procedures on numbers, the base case is often some small
number (like 0 or 1). When you write recursive procedures on strings, the base case is more
likely to be the simplest string (which is the empty string ‘’).

● What will you do if the string is not an empty string? Well, one way you can solve this is

by looking at the first and last letter of string. If these two are equal, then it might be a
palindrome. It will be a palindrome only if all the letters left over in the middle are also a
palindrome. In order to check whether remaining middle of string is a palindrome, you can
recursively call is_palindrome.

13

This can be summarized as follows:

Answer to Q6-6

Recursive v. Iterative
Any procedure that you write recursively, you can also write without using a recursive definition.
Here is another way to define is_palindrome:

def iter_palindrome(s):
 for i in range(0, len(s) / 2):
 if s[i] != s[-(i + 1)]:
 return False
 return True

iter_palindrome is written using a for loop. You loop using variable i in range 0 to length of
input string divided by 2 (i.e. this loop is going through halfway of string s). Inside the loop, there is
an if test that checks if the character at position i is different from the character in position -(i +
1) (i.e. counting from back of string ith positions away). If those characters are different, you have
bumped into a mismatch and we return False. If they are not different, continue going through
the loop. If you reach the end of the for loop without finding any differences, you know that it is a
palindrome and you return True.

14

This alternative way to define is_palindrome is more complicated to understand. If you want to
test a very long palindrome, iter_palindrome (i.e. iterative version) will be much more efficient
than is_palindrome (recursive version). There are a few reasons why:

1. Inside is_palindrome, when we call is_palindrome recursively:

return is_palindrome(s[1:-1])

This recursive version keeps making a new string every time you make a recursive call. This
creates a new string and this step is pretty expensive.

2. Recursive calls themselves are fairly expensive themselves. There are languages which

make recursive calls really cheap. Python is not one of them and Python is fairly expensive
to do a recursive call. For most procedures, the recursive way is often the most elegant and
easiest way to return a correct result. But if you are worried about performance and want
your procedure to work on really large inputs, you are better off finding a non-recursive
way to define that procedure.

15

Bunnies
Fibonacci Numbers are one of the most interesting things in mathematics Once you know about
them you will start to see them all over the place, both in nature and design.

The name comes from Leonardo da Pisa, who is also known as Fibonacci. In 1202 he published
a book called, Liber Abaci. The root, abaci, is the same for the word abacus, the calculating
machine. Liber Abaci is loosely translated as the "book of calculation." The book introduced Indian
mathematics to the West, particularly, Arabic numerals. Arabic numerals soon replaced the Roman
numeral system, which had been widely used. In his book, Fibonacci showed how much easier it is
to do calculations using numbers in the decimal system where the position of the number indicates
its value. He showed this by introducing problems and using calculation to solve them.

The problem that became known as the Fibonacci Numbers, was one of the problems in his book.
He posed the problem like this:

In the beginning there is one pair of rabbits. It takes one month for a rabbit to mature, and one
month for a rabbit to produce offspring.

16

Every month a mature rabbit will produce a new pair of rabbits. Notice how in month three, since
it takes a month for the rabbits to reach maturity (and only in maturity can the rabbits reproduce),
there is only one set of offspring from the original pair of rabbits.

17

Assume that for the sake of this model, rabbits never die. In month four, one pair of baby rabbits
will mature, while the two mature pairs of rabbits will reproduce. This makes a total of five pairs of
rabbits.

18

This keeps going, since the model assumes rabbits never die, that every month a pair of mature
rabbits produces a pair of rabbit babies and that it takes one month for rabbit babies to mature.
Therefore, in month five the three mature pairs of rabbits will all produce a pair of offspring,
making eight pairs of rabbits.

19

While this model is not realistic, it is an interesting mathematical model. This model can be written
in a more formal way.

Each month the number of rabbits is the number of rabbit from the previous month, plus all of
the rabbits that were mature, which is the number of rabbits from two months ago. After this
observation you can predict the number of rabbit pairs there will be in month six using the same
formula: the number of rabbit pairs in month five plus the number of rabbit pairs in month four.
This makes 13 pairs of rabbits.

This is the model that Fibonacci developed. So, here is the question: can you figure out how many
pairs of rabbits there will be at the end of month n, given any number n?

20

Here is how you can define this mathematically:

fibonacci (0) = 0
fibonacci (1) = 1

This is different from the other recursive definitions you've seen in that there are two base cases.
From here you can define every other fibonacci number recursively, starting from these base cases.
So, the fibonacci number n, where n is some whole number greater than one, is equivalent to the
sum of all the babies from the previous month, fibonacci (n-1), plus all of the new babies. The
number of new babies is the number of rabbit pairs two months ago (all of the mature rabbit pairs),
fibonacci (n-2). You can write this:

This equation defines every fibonacci number in terms of the two base cases and the one recursive
case.

21

Q6-7: Bunnies
Define a procedure, fibonacci, that takes a natural number (any whole number zero or higher) as
its input, and outputs the value of that fibonacci number.

Answer to Q6-7

22

Divide and Be Conquered
Here is the procedure you just defined as an answer to the previous quiz question:

def fibonacci(n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 return fibonacci(n-1) + fibonacci(n-2)
print fibonacci(0) # print first base case
0

or

print fibonacci(1) # print second base case
1

and

print fibonacci(2) # plug 2 into final return statement
1
print fibonacci(3)
2
print fibonacci(4)
3
print fibonacci(5)
5
print fibonacci(10)
55
print fibonacci(24) # number of rabbits in two years
46368
print fibonacci(36) # number of rabbits in three years
Program times out in Professor’s/Udacity’s interpreter

23

If you try running the code above in your Python interpreter, you’ll notice that the time to
compute fibonacci this way gets longer as input numbers get larger. The reason for this is that
you are making a lot of redundant computations. If you look at the procedure, you’ll notice that
fibonacci(n) recursively calls fibonacci(n - 1) and fibonacci(n - 2) every time the base
case conditions are not satisfied.

At the start call fibonacci(36), which is broken down into recursive calls to fibonacci(35) and
fibonacci(34). Now fibonacci(35) recursively calls fibonacci(34) and fibonacci(33),
while fibonacci(34) recursively calls fibonacci(33) and fibonacci(32), and so on. See the
tree below:

24

The procedure needs to do a lot of computations and it will take a long time to get calls to the base
cases (fibonacci(0) and fibonacci(1)), which are the only places where the procedure stops
making more recursive calls. If you look at the figure above, you’ll notice that:

● We need to evaluate fibonacci(32) 5 times.
● We need to evaluate fibonacci(33) 3 times.
● We need to evaluate fibonacci(34) 2 times.
● We need to evaluate fibonacci(35) 1 time.
● We need to evaluate fibonacci(36) 1 time.

Do you see a pattern in the list above? Try to see if you can solve the next question related to this.

25

Q6-8: Counting Calls
How many times will you need to evaluate fibonacci(30) in evaluating fibonacci(36)?

Figure this out without drawing the whole tree. Think about what you read in last section, do you
notice a pattern in the figure above that could help you to answer this question.

Answer to Q6-8

26

Q6-9: Faster Fibonacci
Define a faster fibonacci procedure that will enable you to compute fibonacci(36).

Your procedure should estimate the number of rabbits after 36 months, according to Fibonacci’s
model.

Hint: You’ll need a while loop where you use variables to keep track of the previous two numbers,
fibonacci(n-1) and fibonacci(n-2), so you can compute the next one by adding those. You’ll
also need to figure out how to keep the variables up-to-date to maintain the previous two numbers
each time you go through the loop.

Test your code on small numbers before trying fibonacci(36). If you do it this way, you should
be able to compute values of the Fibonacci Numbers for much higher input thanx you could with a
recursive definition.

Answer to Q6-9

27

Ranking Web Pages
Having survived the bunny uprising, you’re ready to move on to the main goal of the class, which
is to return the best page that matches the search query rather than returning all the pages. It’s
important to do this well. This is something that really distinguished Google from earlier search
engines. They had a much smarter way of ranking pages. Often the first or second item in the
returned search was what the user was looking for.

To recap from earlier units; first, you learned to build a crawler (units 1-3). The crawler followed
all the links in the web pages and built an index. After units 4-5, you had an index, which was a hash
table, where you could look up a keyword. You could find the entry where the keyword appears,
and find the list of all the urls of all the pages that contain that keyword.

28

The order in which the pages appear in the list of urls associated with a keyword is the order the
pages were crawled. This process says nothing about which pages are best. In the early days of the
web, when there weren’t many pages, this maybe wasn’t too much of a problem since only a few
pages might match a given keyword. Those days are long gone and now there could be thousands, if
not millions of pages containing a given keyword. A good search engine ranks the pages so that the
one at the front of the list is the one the user most likely wants.

The problem of deciding how to rank the pages leads to the question of how to decide popularity,
which is the topic of the next section.

29

Popularity
Consider a typical group of friends in middle school. One way to decide popularity is to look at
friendship links. Friendship links are go in one direction. Just because Bob is friends with Alice does
not mean Alice is friends with Bob.

Is having a lot of friends enough to make you popular? No, it’s not. You have to have the right sort
of friends. It’s no good to have lots of friends with no friends, you have to have friends who are
popular.

Popularity is about having lots of friends who have lots of friends

30

Initially, you can define popularity as the number of friends a person has. From the diagram above,
it’s the number of arrows pointing towards a person.

This isn’t quite right though because it doesn’t take into consideration the number of friends
of those friends. To do this, you could sum all the popularities of all the friends of a person. In
mathematical notation:

The notation , is the summation sign, which tells you to sum up the popularity(f). The text under

the symbol tells you what values of to include in the sum. It tells you to sum the popularity of each

friend, of . If you’re unfamiliar with the mathematical notation, here’s the same thing in Python
pseudocode.
Pseudocode is an outline of the code which is written for human readability rather than for a
computer. Read more on pseudocode.

In the code below, you know that friends p means the friends of p, but it’s not actually defined
anywhere so the computer will not be able to run it.

def popularity(p):
 score = 0
 for f in friends(p):
 score = score + popularity(f)
 return score

31

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA
http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPseudocode&sa=D&sntz=1&usg=AFQjCNFXWaYZyFsnmT-YqR6QEEacq7jKsA

Q6-10: Good Definitions
Is this a good recursive definition? For something to be a good definition it has to provide a
meaningful answer for all possible inputs.

a. Yes
b. No

Answer to Q6-10

Circular Definitions
How can this problem be fixed? With all the other recursive definitions you had a base case – a way
to stop.

For the recursive factorial definition, you predefined the value at 0 to be 1, that is, factorial(0)
1.

For the palindromes, you defined an empty string to be a palindrome, that is, palindrome('')
True.

For the Fibonacci sequence, you had two base cases.

For all of these definitions you had a starting point that was not defined in terms of the thing you’re
defining. That is why they were good recursive definitions. You had a base case. Maybe inventing a
base case will solve the popularity problem.

32

Assume Alice has popularity 1, and try that as a base case. For the mathematical definition, this is:

For the code, you need to add the base case, which is an if statement, to see if the person you’re
checking the popularity of is Alice.

def popularity(p):
 if p == 'Alice':
 return 1
 score = 0
 for f in friends(p):
 score = score + popularity(f)
 return score

Q6-11: Circular Definitions
Would this definition work?

a. Only if everyone is friends with ‘Alice’.
b. Only if no one is friends with ‘Alice’.
c. Only if there is a friendship path from everyone to ‘Alice’. (There is some way to follow links from
every person in the graph to get to ‘Alice’)
d. Only if there are no cycles in the graph. (There is no way to start from one person and end up
back at the same person by following friendship links.)
e. No.

Answer to Q6-11

33

Relaxation Algorithm (Relaxation)
There was no sensible base case that provides a good recursive definition. Instead, an algorithm
called the relaxation algorithm can be used. The basic idea is simple. Start with a guess and then
loop where you do something to improve the guess. There isn’t a good stopping place yet, or a clear
starting place, like setting the popularity of Alice. Each time you go through the loop, the guess will
be refined, and at some point you’ll stop and take that to be the result you want. In summary:

 # start with a guess
 while not done:
 make the guess better

The procedure will have an extra parameter, which is a time step:

popularity(<time step> ,<person>) score

The base case will be to set the popularity for everyone at time 0 to 1. For the recursive step, the
popularity of each of their friends at the previous time step, is summed. In mathematical terms
this is:

Base case:

Recursive step: for

34

In Python code:

def popularity(t,p):
 if t == 0: # base case, at time step 0
 return 1 # the score is always 1
 else:
 score = 0
 for f in friends(p): # summing over the friends
 score = score + popularity(t-1,f) # adding the popularity at
 # the time step before
 return score

So, now you have a new definition written in both mathematical notation and in Python code.

35

Q6-12: Relaxation
Is this a good recursive definition? (By this, it is not meant whether this is a good definition of
popularity. For the way in which popularity is defined, for all possible inputs, that is, all possible
values for t and p, does it give a result?)

a. yes
b. only if people can't befriend themselves
c. only is everyone has at least one friend
d. only if everyone is more popular than 'Alice'

Answer to Q6-12

36

Page Rank
Ranking web pages is the same as measuring popularity for people. Links on the web are analogous
to friendships in that model. And links from some pages count for more than links from others.

This model is a random web surfer who starts at a random page and then follows the links at
random. The popularity of a page is the probability that the random surfer reaches a particular
page.

The rank function is defined recursively over time. At time 0, the rank of a url is 1. At time t, the
rank of a url is the sum of the ranks for all pages that link to that url.

In addition, the rank contributed by each page is inversely weighted by the number of outlinks from
that page. So, divide each rank in the sum by the number of outlinks from that page.

37

38

Altavista
On this model, pages with no links have a rank of 0, which makes it very hard to start a new page.
So, instead each page will have some starting rank greater than 0.

Since the model represents the probability that a random surfer reached a given page, the ranks
should be a probability distribution. This means that the ranks for all pages will sum up to 1. And
so at time 0, instead of 1, the rank is 1/N for each page, where N is the number of pages.

A damping constant is used to diminish the raw values of the ranking algorithm. In the model, this
represents the probability that a page was reached via following a link. Set the damping constant, d,
to 0.8 for now.

At time t, add (1-d)/N to each rank that will represent the probability that the page was not
reached via following a link. Multiply the first term, the sum, by d. This will make the ranks a
probability distribution at any given time step.

39

Q6-13: Altavista
What is AltaVista?

a. The view from the Udacity headquarters.
b. The most popular web search engine in 1998.
c. Spanish for "You're Terminated, Baby!"
d. A small town in Virginia.

Answer to Q6-13

40

Urank
Since PageRank is a registered trademark of Google, the algorithm will be called URank instead.

URank needs to keep track of which pages link to which pages, so you'll need a data structure to
keep track of which pages link to which other pages. You'll use a directed graph. A directed graph
is a data structure where nodes are linked to other nodes, and the links only go one way. (see http:/
/en.wikipedia.org/wiki/Directed_graph)

So crawl_web will produce a graph in addition to an index, where the graph gives a mapping from
each page to all the pages it links to. The graph will be a dictionary, since it is a mapping from
individual URLs to lists of URLs.

Also, add the variable outlinks which stores the return value of get_all_links(content) so it
can be used for both tocrawl and graph. Adding the line to update the graph will be a quiz.

41

Q6-14: Implementing Urank
For this quiz, add one line of code which will update the graph for each page crawled.

def crawl_web(seed): # returns index, graph of inlinks
 tocrawl = [seed]
 crawled = []
 graph = {} # <url>, [list of pages it links to]
 index = {}
 while tocrawl:
 page = tocrawl.pop()
 if page not in crawled:
 content = get_page(page)
 add_page_to_index(index, page, content)
 outlinks = get_all_links(content)

 #Insert Code Here
 union(tocrawl, outlinks)
 crawled.append(page)
 return index, graph

Answer to Q6-14

42

Computing Page Rank
Much like the Fibonacci solution before, you can use an iterative solution to implement the
recursive definition, instead of a recursive solution. Use a loop to update the page ranks for each
time step.

The output of compute_ranks is a dictionary mapping each URL to its rank, which is a number.

For the homework, the function lookup_best will find the highest-ranking page for a given
keyword, using both the index and the page ranks.

43

Formal Calculations
Remember how the ranking function was defined; npages refers to the number of pages:

rank(0, url) = 1/npages
rank(t, url) = (1-d)/npages +
 sum([for each page 'p' that links to URL,
 d*rank(t-1, p)/(number of outlinks from p)])

Since the ranks should not depend on the order that the pages were examined by the algorithm,
you need to keep track of the ranks at the last time step. Keep two separate dictionaries, ranks
and newranks, where newranks is the working space for each time step. This is similar to the trick
used earlier for the iterative Fibonacci solution.

Computer Rank
The code for this section is shown below under the quiz. d is the damping factor. numloops is the
number of times to do our "relaxation". Changing the number of loops can give different results.
npages is the number of pages in the graph, which is given by len(graph).

Initially, all ranks are set to 1.0/npages (remember: the decimal point to use floating point
arithmetic), matching the base case of the recursive definition.

Then, the algorithm loops through numloops times, updating the rank for each page in the graph.
newrank is initialized to (1-d)/npages, and then the quiz will be to update newrank with the sum
of the inlink ranks. Then newrank is stored in the newranks dictionary.

When the for loop is finished, assign newranks to ranks, since the calculations are finished for
that time step. At the end of the function, return ranks.

44

Q6-15: Finishing Urank
Update newrank based on the values of the previous iteration, ranks, and the incoming links from
graph.

def compute_ranks(graph):
 d = 0.8 # damping factor
 numloops = 10

 ranks = {}
 npages = len(graph)
 for page in graph:
 ranks[page] = 1.0 / npages

 for i in range(0, numloops):
 newranks = {}
 for page in graph:
 newrank = (1 - d) / npages

 #Insert Code Here

 newranks[page] = newrank
 ranks = newranks
 return ranks

Answer to Q6-15

45

Search Engine
Congratulations! You have now built a search engine! You learned how to collect a corpus using a
web crawler, how to build an index and how to make it faster. Most recently you learned how to
rank the results. Your search engine does page ranking better than any search engines before 1998.

Now, there is one thing left to learn – how to use the ranks.

For your homework you are asked to use the ranks to get the best result. To find the best result, just
using the dictionary of ranks is not enough. Instead, you need to use the dictionary to find the result
that matches the query with the best rank.

There are still a few problems left to solve before you can build a search engine to compete
with Google. Finding a name for your search engine is probably the hardest problem. Yoogle?
DuckDuckFind?

Another problem to solve is actually getting your search engine on the web so that other people can
send queries to it. You can learn how to do this in the upcoming Web Applications Course .

In unit 7, you will get prepared for the final exam and you will see some interesting examples of
using computing in context.

46

http://www.udacity.com/overview/Course/cs253
http://www.udacity.com/overview/Course/cs253
http://www.udacity.com/overview/Course/cs253
http://www.udacity.com/overview/Course/cs253
http://www.udacity.com/overview/Course/cs253
http://www.udacity.com/overview/Course/cs253

Answer Key

A6-1: Long Words
The answer is e, none of the above. All of these are sort of real words. It’s not that well defined what
it means for something to be a word.
a. honorificabilitudinitatibus (27 letters) is the longest word used in the works of Shakespeare. It
means roughly “with honor”.
b. antidisestablishmentarianism (28 letters) means the movement against the division of Church
and State.
c. hippopotomonstrosesquippedaliophobia (36 letters) means the fear of long words. It ends with
phobia which means fear.
d. pneumonoultramicroscopicsilicovolcanoconiosis (45 letters) is a kind of lung disease you get
from contact with volcanic particles. It’s the longest word in most large dictionaries.

The reason the answer is e, None of the above is because, given a word of any length, it’s always
possible to construct a longer one. You’ll see how in the next section.

A6-2: Counter
The correct answer is a, None. You can’t actually make any words with the definition as it’s a
circular definition. If you recall from BNF grammar, you can only stop when you reach a terminal
word. The only choice here, is to replace Word with counter-Word.

Word counter-Word

 counter-counter-Word

 counter-counter-counter-Word

You can never stop and so can never make a word this way.

47

A6-3: Expanding our Grammar
The correct answer is d) Infinitely Many. All that is needed is the two rules to make infinitely many
words. This is the power of recursive definitions. Unlike the previous quiz where the definition was
circular, this definition is recursive. That means that Word is defined in terms of itself, but that’s
not the only way it’s defined. There is also another rule which is a starting point where Word is not
defined in terms of itself.

Word counter-Word
Word hippopotomonstrosesquippedaliophobia

First, you could choose to use the second rule to replace Word with
hippopotomonstrosesquippedaliophobia, but that’s not the only thing you could do. You could also
choose to replace Word with counter-Word, and so.

Word hippopotomonstrosesquippedaliophobia

counter-Word counter-hippopotomonstrosesquippedaliophobia

counter-counter-Word counter-counter-hippopotomonstrosesquippedaliophobia

 . . .

There is no limit to the number of words which can be produced this way.

This is a recursive definition. It has a base case,

Word hippopotomonstrosesquippedaliophobia

which is the stopping condition that means you have at least one word that is not defined in terms
of another word. It also has a recursive case which defines a word in terms of another word.

Word counter-Word

Combining the two gives a definition which can be used to make infinitely many words.

48

A6-4: Ancestors
The best answer is:
b. Ancestor Parent
 Ancestor Parent of Ancestor
These two rules provide a recursive definition, which work. They say that the Parent is an Ancestor,
and so is the Parent of the Parent of the Ancestor and so on, covering all of the ancestors.

Here is why the others are incorrect:

a. Ancestor Parent of Ancestor
This first rule by itself is not enough because there is no base case; there is no rule that defines
Ancestor in terms of something that is not itself. You can keep producing parent of parent of parent
of … of Ancestor but you can never stop.

c. Ancestor Parent
 Ancestor Parent of Parent
 Ancestor Parent of Parent of Ancestor

These three rules also give a recursive definition, which works. They produce the same set of
ancestors as part b. The three rules can be combined to give any Parent of Parent of … of Ancestor,
but there are more rules than are necessary.

49

A6-5: Recursive Factorial
Going back to the mathematical definition,

 for

you need to turn this into code. It’s fairly straight forwards. First, you need to define if you’ve
reached the base case, which is when n=0, so you need to check for that. Remember you need to
use double equals == for comparison. When n is 0, the code should return the value 1 since the base

case is This is done using the following piece of code.

def factorial(n):
 if n == 0:
 return 1

Following on from there, you need to deal with the recursive case, where

You need to return the new result which is which completes the procedure.

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n - 1)

50

 It might seem like circular to define factorial using factorial, but it’s not because of the base
case when n==0 which will be reached when any positive whole number is passed in since it is
decreased by 1 for each new call. A walkthrough of the code for factorial(3) is below. First,
there is an explanation of the steps, and then a diagram showing how the factorial procedure
is called and the final answer constructed as the returns are fed back. The initial input to the
procedure factorial is 3, and then the procedure calls itself several times.

first call: factorial(3)
n 3
n == 0 is False so don’t return 1
go to else:
return 3 * factorial(2)

second call: factorial(2)
n 2
n == 0 is False so don’t return 1
go to else:
return 2 * factorial(1)

second call: factorial(1)
n 1
n == 0 is False so don’t return 1
go to else:
return 1 * factorial(0)

final function call: factorial(0)
n 1
n == 0 is True so return 1

51

This is shown in the flowchart below. The left hand column shows how factorial is called with
decreasing input values until the base case is reached. When the input value is 0, the base case is
reached and 1 is returned. That value is then fed back to the previous call and then the next value
going back up on the right is calculated is fed back to the previous call to that and so. (Follow the
arrows down the left hand column and up the right hand column.)

factorial(3) 6 so factorial(3) 6
 giving the final answer of 6
 3 * factorial(2) 3 * 2 = 6
 and 2 replaces factorial(2)
 2 * factorial(1) 2 * 1 = 2
 and now 1 replaces factorial(1)
 1 * factorial(0) 1 * 1 = 1

 which feeds back to factorial(0) in the line above
 1 returns 1

52

A6-6: Palindromes
The is_palindrome procedure will take a single string as input. Write this procedure in such a way
that it first checks for the base case. The base case was an empty string (in which case we return
True). This can be done as follows:

def is_palindrome(s):
 if s == '':
 return True
Now you need to test if the first and last characters match. You can do this using Python’s string
indexing operators. The code looks like:

def is_palindrome(s):
 if s == '':
 return True
 else:
 if s[0] == s[-1]:
 return is_palindrome(s[1:-1])
 else:
 return False

s[0] and s[-1] get us the first and last characters respectively. If they match, then we recursively
call is_palindrome (passing in the middle string using Python’s slice notation). If they do not
match, then you know it’s not a palindrome and the procedure returns false.

53

You can test is_palindrome using following test cases:

● When you test is_palindrome with base case (i.e. empty string ''), you get the result
True (since empty string is a palindrome).

● When you test is_palindrome with any single letter string (e.g. 'a'), you get the result
True (since every single letter string is a palindrome).

● If you try string 'ab' (which is not a palindrome), you get the result False.
● As a large string test, you can try the string 'level' (a palindrome). You get True in the

result.
● You can also test for the most famous palindrome string which is “A man, a plan, a canal,

Panama.” In order to input this into the procedure, you need to remove the spaces, commas
and capitals as the code doesn’t remove them and they aren’t considered in palindromes.
That leaves you with the string 'amanaplanacanalpanama'. When you test this string, you
get True as the result.

A6-7: Bunnies

Here is one way to answer this question:

def fibonacci(n):
 if n == 0: # account for base case
 return 0
 if n == 1 # account for base case
 return 1
 return fibonacci(n-1) + fibonacci(n-2) # otherwise do recursive part
 # of the definition

In the next lecture you will learn how to simplify this and write it in the Python interpreter.

54

A6-8: Counting Calls

The answer is 13. The reason for this is quite interesting. Look at the numbers you got so far in the
tree:

n (input to fibonacci procedure) Number of
calls

36 1

35 1

34 2

33 3

32 5

31 8

30 13

55

You might have noticed a pattern in number of calls. This is exactly the fibonacci series.

Every time you decrease the number by 1, you add the number of calls for last and last-but-one
number of calls. If you look at the structure of the tree, you’ll notice that it follows the same rule
you read about with respect to the number of rabbits reproducing. Every pair of rabbits you have
on a previous level reproduces two more. This means that when you do the addition, you are
redundantly calling all previous calls.

As you can see, there is one call to fibonacci(34) at a previous level. This produces two new calls
to fibonacci where the inputs are different. But if you look at the way the inputs are distributed,
you’ll see 3 (2 + 1) calls to fibonacci(33), 5 (3 + 2) calls to fibonacci(32) and 8 (5 + 3) calls to
fibonacci(31).

Therefore, you get 13 (8 + 5) calls for fibonacci(30). This pattern will continue and these
numbers will increase very fast. The number of calls, fibonacci(x) that you need every time you
evaluate fibonacci(36) is given by:

Number of fibonacci(x) calls when evaluating fibonacci(36) = fibonacci(36 - n - 1)

When you try to evaluate fibonacci(x) for larger values of x (using the recursive definition), it
takes large amount of time. You need to find a more efficient way to compute fibonacci numbers
(You will study this in next section).

The recursive procedure is inefficient because the procedure is making redundant computations.
For example, to compute fibonacci(36), you had to compute fibonacci(34) and
fibonacci(35). All the work required to compute fibonacci(34)–the yellow circled section on
right side in the diagram below – was redundantly computed again by call to fibonacci(34) –the
yellow circles section on left side in the diagram.

56

So, the solution to this is to use an iterative procedure (i.e. use a while loop) instead of a recursive
procedure. Every recursive procedure can also be defined without using recursive definition.
Though it is often easier and cleaner to think, read and write a recursive procedure, it is often not
the fastest way to compute (e.g. redundant calls to fibonacci) in this example.

57

A6-9: Faster Fibonacci
You can start off with base cases:

 def fibonacci(n):
 # base cases
 if n == 0:
 return 0
 if n == 1:
 return 1

Then add recursive case. For that, you will need three variables:

● res: variable storing the result to be returned
● before2: auxiliary variable storing value from two steps before
● before1: auxiliary variable storing value from one step before

 # final result
 res = 0
 # two steps before (fibonacci(0) = 0)
 before2 = 0
 # one step before (fibonacci(1) = 1)
 before1 = 1

And, obviously, some loop will come in handy as well. Iterate over all the numbers from 0 to n,
which means n+1 iterations in total. However, the first two numbers are handled by the base cases,
which will leave you with n+1-2, i.e. n-1 iterations (i.e. i=2 instead of 0 and while i <= n instead
of while i < n).

 i = 2
 while i <= n:

58

Note: It would be an error to count only n iterations at the beginning of the previous paragraph.
Since you want to include both 0 and n, it actually makes n+1 iterations instead of just n. This is one
version of a very frequent, yet very hard-to-find error. This error is in fact so frequent and ugly, that
it even has a name: off-by-one error. You can find out more about it here: http://en.wikipedia.org/
wiki/Off_by_one.

The body of the loop will then directly mimic the definition of fibonacci numbers:

 # result for current i is sum of two previous ones
 res = before2 + before1

 # i is going to be one more, thus before1 and before2
 # variables must be updated by one step as well
 before2 = before1
 before1 = res
 # it is easy to forget this line, thus it is the last
 # to be well visible
 i = i + 1

59

http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one
http://en.wikipedia.org/wiki/Off_by_one

And in the end, return the result:

 return res

So you end up with fully functional and correct solution:

 def fibonacci(n):
 # base cases
 if n == 0:
 return 0
 if n == 1:
 return 1

 # final result
 res = 0
 # two steps before (fibonacci(0) = 0)
 before2 = 0
 # one step before (fibonacci(1) = 1)
 before1 = 1

 i = 2
 while i <= n:

 # result for current i is sum of two previous ones
 res = before2 + before1

 # i is going to be one more, thus before1 and before2
 # variables must be updated by one step as well
 before2 = before1
 before1 = res
 # it is easy to forget this line, thus it is the last
 # to be well visible
 i = i + 1
 return res

60

However, there are few details that can be improved. First, the usage of the while loop instead of
for loop and range:

 def fibonacci(n):
 # base cases
 if n == 0:
 return 0
 if n == 1:
 return 1

 # final result
 res = 0
 # two steps before (fibonacci(0) = 0)
 before2 = 0
 # one step before (fibonacci(1) = 1)
 before1 = 1

 # This goes out:
 #i = 2
 #while i <= n:
 # This goes in:
 for i in range(2,n+1) # beware of off-by-one error!

 # result for current i is sum of two previous ones
 res = before2 + before1

 # i is going to be one more, thus before1 and before2
 # variables must be updated by one step as well
 before2 = before1
 before1 = res
 # This goes out:
 ## it is easy to forget this line, thus it is the last
 ## to be well visible
 #i = i + 1
 return res

61

Then, notice that you can write the for loop in a way that will not lure you into an off-by-one trap
but only if you replace saving the past two values by holding the current and proceeding one. As a
bonus, first two if statements defining base cases will be rendered redundant and can be removed
as well:

62

 def fibonacci(n):
 # This goes out:
 ## base cases
 #if n == 0:
 # return 0
 #if n == 1:
 # return 1

 # This goes out:
 ## final result
 #res = 0
 ## two steps before (fibonacci(0) = 0)
 #before2 = 0
 ## one step before (fibonacci(1) = 1)
 #before1 = 1

 # This goes in:
 current = 0 # fibonacci(0) at the bginning
 after = 1 # fibonacci(1) at the beginning

 # This goes out:
 #for i in range(2,n+1) # beware of off-by-one error!
 # This goes in:
 for i in range(0, n) # no off-by-one trap
 # This goes out:

 ## result for current i is sum of two previous ones
 #res = before2 + before1

 ## i is going to be one more, thus before1 and before2
 ## variables must be updated by one step as well
 #before2 = before1
 #before1 = res
 # This goes in:
 temp = current # save old current value
 current = after
 after = temp + current # use saved old current value
 # This goes out:
 #return res
 # This goes in:
 return current

The last small detail, is to remove temporary variable temp using multiple assignment:

 def fibonacci(n):
 current = 0 # fibonacci(0) at the bginning
 after = 1 # fibonacci(1) at the beginning

 for i in range(0, n)
 # This goes out:
 #temp = current # save old current value

63

 #current = after
 #after = temp + current # use saved old current value
 # This goes in:
 current, after = after, current + after
 return current

The final result is shown below. All the redundant calculations are avoided by keeping track of two
variables. To avoid the need for special cases for n = 0 and n = 1, the code keeps track of the
current value and the number following it instead of keeping track of the previous two numbers.

def fibonacci(n):
 current=0 # fibonacci(0)
 after=1 # fibonacci(1)
 for i in range(0, n): # start at 0, where current is fibonacci(0),
 # and after is fibonacci(1)
 current, after = after, current + after # see note below
 return current

The values of current and after are updated according to the recursive definition. This is done
using multiple assignment:

current, after = after, current + after

This means that current is set to after, and after is set to the sum of the old current and the
old after values simultaneously. Without using multiple assignment, you would need to use a
temporary variable to save one of the values.

64

When n=0, the code doesn’t go through the loop at all

print fibonacci(0)
0

When n=1, it goes through the loop once.

print fibonacci(1)
1
print fibonacci(2)
1
print fibonacci(3) # this should be 1 + 1 = 2, which it is
2
print fibonacci(5)
5

In the answer to quiz 6-8 (Counting Calls) you saw that the number of calls to fibonacci(2) when
calculating fibonacci(36) using the recursive definition was equal to fibonacci(33) but you
couldn’t calculate it then because the recursive code was too slow. Why did it take that code so long
to run?

print fibonacci(33)
3524578

That’s a little over three and a half million calls! Even with a processor doing a billion instructions
a second, doing 3.5 million recursive calls is going to take a while. Each time through a call is not
just one instruction, but many thousands of instructions, so it takes quite a long time to run. It
wasn’t just the fibonacci(33) calls to fibonacci(2) that needed to be done, but also all the
other elements leading up to get to fibonacci(36). With this faster, iterative code, you now can
calculate fibonacci(36).

print fibonacci(36)
14930352

65

So, after three years, there would be nearly 15 million rabbits using Fibonacci’s model. How many
would there be after 5 years?

print fibonacci(60)
1548008755920

After five years there would be over one and a half trillion rabbits! To try to relate to this, consider
how many months it would take for the mass of the rabbits to overtake the mass of the earth.

A well fed rabbit weighs approximately 2 kg, although if they were spreading as fast as this
model suggests, there wouldn’t be enough food for them to all be well fed. The mass of the earth
is kg. In Python, , which is a 1 with 24 zeroes after it, is written as 10**24. To
demonstrate the power notation,

print 2**10
1024

So 2**10 is 1024 because 2*2*2*2*2*2*2*2*2*2 = 1024.

mass_of_earth = 5.9722 * 10**24 # kilograms
mass_of_rabbit = 2 # 2 kilograms per rabbit

n = 1
while fibonacci(n) * mass_of_rabbit < mass_of_earth:
 n = n + 1
print n, fibonacci(n)
119 3311648143516982017180081

Only 119 months, which is less than 10 years for the rabbits to take over the earth! In less than
10 years, using this model, the mass of rabbits would be greater than the mass of the earth. There
would be over 3 trillion trillion () of them! Be afraid, be very afraid of all these rabbits!

66

The good news is that the model is not very accurate as rabbits do die, and when there is too little
food, their numbers won’t grow as fast as the model suggests. The model was created to illustrate
mathematical principles rather than to accurately represent the population growth of bunnies.

67

A6-10: Good Definitions
The answer is b, no. It is not a good recursive definition because it has no base case. It’s a circular
definition. The definition requires calling popularity over and over again, but it will never get to a
point where it can stop.

Consider the popularity of Charlie:

Now you need to work out the popularity of each of Diana, Edgar and Fred.

As you continue to try to work out the popularity of Diana, you need to compute the popularity of
Alice.

Now to work out the popularity of Alice, you need the popularity of Diana, but to work out Diana’s
popularity you need to work out Alice’s popularity!

It's circular! It just gets worse and worse and never stops.

68

A6-11: Circular Definitions
The correct answer is e) No.

a. Only if everyone is friends with ‘Alice’.

To figure out the popularity of Bob, you need to know the popularity of Charlie and to figure out
the popularity of Charlie you need to figure out the popularity of Bob as well as of Alice. You’ll keep
bouncing back and forth between Bob and Charlie.

b. Only if no one is friends with ‘Alice’.

Removing the links between Alice and the others doesn’t solve the problem. You’ll still be bouncing
back and forth between Bob and Charlie.

c. Only if there is a friendship path from everyone to ‘Alice’.

This still doesn’t remove the bouncing back and forth between Bob and Charlie problem.

d. Only if there are no cycles in the graph.

Here it would be ok, because you could work out the popularity of Bob by working out the
popularity of Charlie, and to work out the popularity of Charlie, you’d use the popularity of Alice.

This also works, because you only need to work out the popularity of Bob to work out the
popularity of Diane, and from above, that’s possible.

69

There isn’t a cycle, but how can you work out the popularity of Edgar? The way the Python code
is written, this could work, as the popularity of someone with no friends is 0, so you’re due some
credit if you chose this option. On the other hand, it doesn’t make sense from the mathematical
definition as you don’t have a way to find the popularity of Edgar. However, even though the Python
code might work, it doesn’t give you meaningful popularity scores.

This is not a good way to define popularity. It was arbitrary to choose Alice to give popularity 1.
Poor Alice! There is also nothing she can do to make herself more popular which isn’t very fair.

70

A6-12: Relaxation

The answer is yes. No matter what is passed in for t and p, you’ll eventually get a result. Every time
you do a recursive call, the value of t is one less than before since

score = score + popularity(t-1,f)

If you start with an integer for t, and keep reducing it by one, you’ll eventually get to t=0 which
returns 1 without referring back to the popularity procedure again.

if t == 0:
 return 1

It might not produce a meaningful definition of popularity, but it will produce a result.

A6-13: Altavista
The answer is b, the most popular web search engine in 1998.

AltaVista is also a small town in Virginia, but that’s not important right now.

The reason Google outcompeted AltaVista was because of superior page ranking. The algorithm
is called PageRank, which is named after Larry Page, the co-founder of Google (with Sergey Brin).
(To read more about how the original Google search engine worked, check out this link, which is
student paper describing its inner workings: http://infolab.stanford.edu/~backrub/google.html)

The problem with search engines like AltaVista is they were too easy to game; the highest-ranking
pages were often those that were best at gaming the rankings.

A6-14: Implementing Urank
The one line of code that needs to be added is:

graph[page] = outlinks

This adds the list of outlinks to the graph dictionary, using page as the key.

The next step is to use the graph to calculate page ranks.

71

A6-15: Finishing Urank
The code to be inserted is:

 for node in graph:
 if page in graph[node]:
 newrank += ranks[node] * d / len(graph[node])

node is used instead of page because page is already used to refer to something. Loop through
each node in the graph, checking whether that node links to page. If so, update newrank according
to the formula from the recursive definition.

So now, compute_ranks returns a dictionary which gives a rank for each page in the index.

In the example input, kathleen has a relatively high rank even though it only has 2 incoming links.
This is because the incoming links are from very popular pages.

72

