
cs1120 Fall 2009

David Evans
http://www.cs.virginia.edu/cs1120

Lecture 10:

Fracturing

Fractals

1

Menu

• Problem Set 2

• Mapping Lists

• Problem Set 3

2

Problem Sets

• Not just meant to review stuff you should
already know

– Get you to explore new ideas

– Motivate what is coming up in the class

• The main point of the PSs is learning, not
evaluation

– Don’t give up if you can’t find the answer in the
book (you won’t solve many problems this way)

– Do discuss with other students

– Do get help from Help Hours and Office Hours

3

PS2: Question 3

Why is

(define (higher-card? card1 card2)

(> (card-rank card1) (card-rank card2)

better than

(define (higher-card? card1 card2)

(> (car card1) (car card2))

?

4

Data Abstraction: to understand more

complex programs, we need to hide details

about how data is represented and think

about what we do with it.

PS2: Question 8, 9

• Predict how long it will take

• Identify ways to make it faster

Most of next week and much of many later classes will

be focused on how computer scientists predict how long

programs will take, and on how to make them faster.

5

Question 7 (“Gold Star” answer)

(define (find-best-hand hole-cards community-cards)

(car (sort (possible-hands hole-cards community-cards))

higher-hand?))

How can we do better?

6

Hmmm....

7

(define (pick-minimizer f a b)

(if (< (cf a) (cf b)) a b))

(define (find-minimizer f p)

(if (null? (cdr p))

(car p)

(pick-minimizer f (car p)

(find-minimizer f (cdr p)))))

from last class:

find-best

(define (find-best f p)

(if (null? (cdr p))

(car p)

(pick-best f

(car p)

(find-best f (cdr p)))))

(define (pick-best f a b)

(if (f a b) a b))

8

find-best-hand

(define (find-best-hand hole-cards community-cards)

(find-bestiest

(possible-hands hole-cards community-cards))

higher-hand?))

Next week: how much better is this?

9

Mapping Lists

10

Define a procedure list-map that takes two

inputs, a procedure and a list and produces as

output a list whose elements are the results of

applying the input procedure to each element in

the input list. (Example 5.4)

> (list-map square (list 1 2 3))

(1 4 9)

> (list-map (lambda (x) (* x 2)) (list 1 2 3 4))

(2 4 6 8)

> (list-map (lambda (x) (if (odd? x) (+ x 1))) (list 1 2 3 4))

(2 2 4 4)

list-map

11

(define (list-map f p)

(if (null? p)

null

(cons (f (car p))

(list-map f (cdr p)))))

Equivalent to the built-in procedure map (except

map can work on more than one list).

Charge

• Don’t leave yet: will return PS2 and Quiz next

• PS3 is due in one week

• Help Hours tonight (6-8:30pm in Olsson 001)

• Extra office hours tomorrow, 11am-noon

– I’ll be away next week – lectures by Wes Weimer!

12

Returning PS2 and Quiz

13

Front

abc8a … dwa2x eab8d … jsw8a

jta9nk … mz2h os9e … wch9a

