
cs1120 Fall 2009

David Evans
http://www.cs.virginia.edu/evans

Lecture 15: Running Practice Menu

• Any Questions from Last Week?

• Exam 1

• Practice Analyzing Procedures

• Finest Fractalists

Sunburst

by Erika Crawford

Exam 1
• Handed out at end of Friday’s class, due at the

beginning of Wednesday’s class

• Open non-human resources except for Scheme
interpreters but no help from other people

• Covers everything through this Wednesday
including:

– Lectures 1-16, Course Book Chapters 1-8, PS 1-4

• Sample exams from previous years: if you can do
well on Spring 2009 Exam 1, you should do well on
our Exam 1 (of course, questions will be different!)

• Review Session, Wednesday 6:30 in Olsson 001

Running Time Practice

(define (flatten-commands ll)

(if (null? ll) ll

(if (is-lsystem-command? (car ll))

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

From ps3:

What is the asymptotic running time of flatten-commands?

First: determine running times of all the procedures applied in flatten-commands.

Flatten Running Time

(define (flatten-commands ll)

(if (null? ll) ll

(if (is-lsystem-command? (car ll))

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

From ps3:

First: determine running times of all the procedures applied in flatten-commands.

null?, car, cons, cdr – we already know there are constant time

What about is-lsystem-command?

is-lsystem-command?

(define (is-lsystem-command? lcommand)

(or (is-forward? lcommand)

(is-rotate? lcommand)

(is-offshoot? lcommand)))

or is a special form:

OrExpression ::= (or MoreExpressions)

To evaluate (or Expr1 MoreExpressions):

1. Evaluate Expr1.

2. If it evaluates to a non-false value, that is the value of the or

expression. None of the other sub-expressions are evaluated.

Otherwise, the value of the or-expression is the value of

(or MoreExpressions)

The value of (or) is false.

is-lsystem-command?

(define (is-lsystem-command? lcommand)

(or (is-forward? lcommand)

(is-rotate? lcommand)

(is-offshoot? lcommand)))

(define (is-forward? lcommand)

(eq? (car lcommand) 'f))

(define (is-rotate? lcommand)

(eq? (car lcommand) 'r))

(define (is-offshoot? lcommand)

(eq? (car lcommand) 'o))

Each of these procedures has

constant running time: they

involve only applications of

constant time procedures eq?

and car.

is-lsystem-command? has

constant running time: it

involves applications of at most

three constant time procedures.

Flatten Running Time

(define (flatten-commands ll)

(if (null? ll) ll

(if (is-lsystem-command? (car ll))

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

From ps3:

First: determine running times of all the procedures applied in flatten-commands.

null?, car, cons, cdr, and is-lsystem-command? are constant time

Running Time Practice

(define (flat-append lst ll)

(if (null? lst) ll

(cons (car lst) (flat-append (cdr lst) ll))))

What is the asymptotic running time of flat-append?

Other than the recursive call, each execution is constant time:

null?, car, cons, cdr, are constant time

How many recursive calls are there?

Remember: we care about the size of the input.

Introduce variables:

N1 = number of elements in first input list (lst)

N2 = number of elements in second input list (ll)

N1 (the number of elements in the first input list)

What is the running time?

The asymptotic running time of flat-append is in θ(N1)

where N1 is the number of elements in the first input.

Note: flat-append is the same as list-append! (Stupid to define

this as a separate procedure and name it flat-append.)

Flatten Running Time

(define (flatten-commands ll)

(if (null? ll) ll

(if (is-lsystem-command? (car ll))

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

First: determine running times of all the procedures applied in flatten-commands.

null?, car, cons, cdr, and is-lsystem-command? are constant time

flat-append has running time in θ(N1) where N1 is the number of

elements in the first input.

Second: determine running time for each application except for recursive call.

Need to consider both paths:

(if (is-lsystem-command? (car ll))

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

Paths to Flattening

(if (is-lsystem-command? (car ll))

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

Each recursive call involves θ(P) work where

P is the number of elements in (car ll).

Each recursive call reduces the number

of elements in ll by one.

For input list that is all lists of length P:

flatten-commands has running time in θ(QP) where Q is the

number of sub-lists (of length P) in the input list.

Teamwork by

Rose Cunnion and

Lucy Raper

to be continued Wednesday...

Fractal Finalists

1 2
3

4 CrissCross 5 Ascension 6

Blowin’ in the Wind TwistOnTiffany’s

Bouquet

August Wheat

Blowin’ in the Wind

TwistOnTiffany’s

Bouquet

CrissCross

Ascension

August Wheat

Blowin' in the Wind

by Ian Nathan
TwistOnTiffany’s

by Brittney Blanks
Bouquet

by Richard McPherson

CrissCross

by Trygve Loken and Andrew Crute

Ascension

by Siddharth Rajagopalan

August Wheat

by Melissa Bailey

Winner! by popular vote

Charge

• PS4 is due Wednesday

• Exam 1 is out Friday, due next Wednesday

• Exam Review, Wednesday 6:30 in Olsson 001

Returning PS3

22

Front

abc8a … dwa2x eab8d … jsw8a

jta9nk … mz2h os9e … wch9a

