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Lecture 16: Power Analysis Menu

• Finishing Analyzing Flattening

• Power

Reminders:

Review Session, Wednesday 6:30 in Olsson 001

Extra Office Hours, Thursday 1:30-3 in Olsson 236A

Recap: Flatten Running Time

(define (flatten-commands ll)

(if (null? ll) ll

(if (is-lsystem-command? (car ll)) 

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

First: determine running times of all the procedures applied in flatten-commands.

null?, car, cons, cdr, and is-lsystem-command? are constant time

flat-append has running time in θ(N1) where N1 is the number of 

elements in the first input. 

Second: determine running time for each application except for recursive call.

Need to consider both paths:

(if (is-lsystem-command? (car ll)) 

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

Paths to Flattening

(if (is-lsystem-command? (car ll)) 

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

Each recursive call involves constant work .

Each recursive call reduces the number of elements in ll

by one.

For input list that is all lsystem commands of length N:

flatten-commands has running time in θ(N) where N is 

the number of lcommands in the input list. 

Paths to Flattening

(if (is-lsystem-command? (car ll)) 

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

Each recursive call involves θ(P) work where

P is the number of elements in (car ll).

Each recursive call reduces the number 

of elements in ll by one.

For input list that is all lists of length P:

flatten-commands has running time in θ(QP) where Q is the  

number of sub-lists (of length P) in the input list. 

Combining the Paths

For input list that is all lsystem-commands:

flatten-commands has running time in θ(N) where N is the 

number of elements in the input list. 

(define (flatten-commands ll)

(if (null? ll) ll

(if (is-lsystem-command? (car ll)) 

(cons (car ll) (flatten-commands (cdr ll)))

(flat-append (car ll) (flatten-commands (cdr ll))))))

For input list that is all lists of length P:

flatten-commands has running time in θ(QP) where Q is the  

number of sub-lists (of length P) in the input list. 

For any input:

flatten-commands has running time in θ(M) where M is the size of the 

input list (the total number of lcommands in ll and all its sub-lists,

not counting elements in offshoot command lists).



Power

Define and analyze the asymptotic running 

time of a procedure power that takes two 

numbers, a and n, and input, and outputs an.

Hint:

a0 = 1

an = a * an-1 for n > 0

Simple Power

(define (power a n)

(if (= n 0) 1

(* a (power a (- n 1)))))

What is the asymptotic running time of power?

Running Time Analysis

(define (power a n)

(if (= n 0) 1

(* a (power a (- n 1)))))

1. What are the running times of procedures applied by 

power?

2. What is the running time of evaluating the body 

except for the recursive call?

3. How many recursive calls are there?

n, the value of the second input n

Running Time Analysis

(define (power a n)

(if (= n 0) 1

(* a (power a (- n 1)))))

1. What are the running times of procedures applied by 

power?

2. What is the running time of evaluating the body 

except for the recursive call?

3. How many recursive calls are there?

n, the value of the second input n

= and – with one input constant: constant running time

What about *?

• Cannot be constant time

• Multiplication must at least look at all the 

digits in both numbers

• Grade-school multiplication algorithm has 

running time in Θ(W2)

(* a (power a (- n 1)))

* is in Ω(W) where W is the total length (number of bits) 

of the inputs.

* is in O(W2) where W is the total length (number of 

bits) of the inputs.

Note: O instead of Θ since there may be faster * algorithms, and we 

don’t know what Scheme interpreter actually does.

What about *?

(* a (power a (- n 1)))

* is in Ω(W) where W is the total length (number of bits) 

of the inputs.

* is in O(W2) where W is the total length (number of 

bits) of the inputs.

What can we say about * as it is used here?  (what is W?)

Worst case: W = bits in a + bits in an-1

* has running time in O((a
b
n

v
)2) where a

b

is number of bits in a and n
v 
is value of n.



Running Time Analysis

(define (power a n)

(if (= n 0) 1

(* a (power a (- n 1)))))

Each body evaluation:

Number of recursive calls:

n
v
, the value of the second input n

= and – with one input constant: constant running time

* has running time in O((a
b
n

v
)2) and Ω(a

b
n

v
)

Running time for power is in O(n
v
(a

b
n

v
)2) = O(a

b
2n

v
3) and Ω(a

b
n

v
2)

Bits and Values

Running time for power is in O(a
b

2n
v
3) and Ω(a

b
n

v
2)

where a
b

is number of bits in a and n
v 
is value of n.

What is the running time in terms of the size of the input?

n
v

= 2nb

Running time for power is in O(a
b

2(2nb )3) and Ω(a
b

2(2nb )2).

Testing Power Analysis

> (time (power 2 10000))

cpu time: 47 real time: 38 gc time: 0

> (time (power 2 100000))

cpu time: 1529 real time: 1533 gc time: 763

nb = 14

nb = 16

> (/ (power (power 2 16) 3) (power (power 2 14) 3))

64

> (/ (power (power 2 16) 2) (power (power 2 14) 2))

16

> (/ 1529 47)

32 25/47

Running time for power is in O(a
b

2(2nb )3) and Ω(a
b

2(2nb )2).

> (time (power 2 1000000))

nd = 7 
Running time for power is in 

O(a
b

2(2nb )3) and Ω(a
b

2(2nb )2).

Faster Powering?

a2n = an * an

Gold Star Challenge Problem: define and analyze 

(correctly!) an asymptotically faster power procedure.

Charge

• ACs’ Exam Review Session: Tonight at 6:30, 

Olsson 001

• Extra Office Hours, Thursday 1:30-3pm

• Exam 1 out Friday


