Lecture 18: Changing State _, 12000
Sounds of Colossus: http://pixelh8.co.uk/discography/ David Evans

http://www.cs.virginia.edu/evans

Menu

* Computing with Electrons
* The Story So Far
* Introduction Mutation

Yesterday’s Nobel Prize in Physics

Charles K. Kao
Standard Telecommunication
Laboratories, United Kingdom Bell Labs, New Jersey

fiberoptics: using light to Charge-Coupled Device (1969)

transmit data

Charge-Coupled Device

»:@&a%mmmam

O O A

(CCD)

Moving Collected Charge

Photocell:
photoelectric effect
(Einstein’s 1921 nobel
prize): photons hit
silicon plate and knock
out electrons (more
Photocell light, more electrons)

T Silicon substrate:
not powered, conducts well

Voltage
powered, does not conduct

Sloan Digital Sky Survey (1998): array of 30, ~4Mpixel CCDs

cs1120 Story so Far

Synthesis Course Roadmap

Qa
2 2 v 2
= n O = 5
(0] = 8 [] q—". oo =
<] e > = Qo c @©
@ 5 © = O
S ©] & o T =
W @ O ®© w T s = 2
c o o = c 0 S Q
T £ £ ®© = @ <] @ <
w — =% [N (a) O 5 < 40-3 ..
.o —
£ & @ ¥ & S o & o0
E © < < < s 8 3 = «
2 © U U © s & 2 % 7
g w o © = > >
O [J] ©v oo — = =
. £ 8 £ o SR-— =
— c = b P=Rr) N Q0 Q0
< S K 5§ ©F S T g
(@) = v 3 ~ =] Q
= G s < = n =8 [
& - £
< o <
< (@) (&) %0
(@] oo o
~ —
A =
_S (G}
Analysis

Computer Science: ¢s1120 so far

* How to describe information processes by
defining procedures (Chapters 3, 4, 5)
— Programming with procedures, lists, recursion

* How to predict properties about information
processes (Chapter 6, 7)
— Predicting how running time grows with input size

* How to efficiently implement information
processes (not much on this)

— Chapter 3 (rules of evaluation)
— Chapter 6 (machines)

cs1120 Upcoming

* How to describe information processes by
defining procedures
— Programming with state (Ch 9), objects (Ch 10), languages (Ch

11)
* How to predict properties about information
processes
— Are there problems which can’t be solved by algorithms? (Ch
12)
— What is the fastest process that can solve a given problem? (Ch
13)

* How to efficiently implement information processes
— How to implement a Scheme interpreter (Ch 11)

From Chapter 1/Lecture 1:

The Liberal Arts

o Ny
M

Trivium (3 roads) Quadrivium (4 roads)

SN/

Grammar Rhetoric Logic Arithmetic Music

Geometry Astronomy

Liberal Arts Checkup

* Grammar: study of meaning in BNF, RTN, rules of
. . evaluation for meaning
written expression

€ « Rhetoric: comprehension of verbal | Notmuch yet..interfaces
E i i between components (PS6-9),
'S and written discourse program and user (P$8-9)
—
=

* Logic: argumentative discourse for ocoromnon

discovering truth recursive definitions

§ ¢ Arithmetic: understanding Notmuch ot
S numbers wait until November
S
o) . . . Curves as procedures,
C * Geometry: quantification of space fractals (PS3)
J « Music: number in time [ves, listen to “Hey Juder”

/-\Stl’0n0my | Soon: read Neil deGrasse Tyson’s essay

Introducing
Mutation

A New Musical-Comedy-Horror Show
.0, v

From Lecture 3:

Evaluation Rule 2: Names

A name expression evaluates to the value
associated with that name.

> (define two 2)
> two
2

This has been more-or-less okay so far, since the value
associated with a name never changes...

Names and Places

* A name is not just a value, it is a place for storing a
value.

 define creates a new place, associates a name with
that place, and stores a value in that place

(define x 3) x: 3

Bang!

set! (“set bang”) changes the value associated
with a place

> (define x 3)
> X

3

> (set! x 7)

> X

7

X:7

set! should make you nervous

> (define x 2)

> (nextx)

3 Before set! all procedures

> (nextx) were functions (except for

a some with side-effects). The
> x value of (f) was the same

4 every time you evaluate it.

Now it might be different!

Defining nextx

(define (nextx)
(set!'x (+x 1))

X) (define nextx

(lambda ()
(begin
(set!'x (+x 1))
x))))

syntactic sugar for

Evaluation Rules

> (define x 3)
> (+ (nextx) x)

Or DrScheme evaluates application
> (.|. X (nextx)) subexpressions left to right, but

Scheme evaluation rules allow any
order.

or 10

Mutable Cons Cell

mcons — creates a mutable cons cell
(mcar m) — first part of a mutable cons cell
(mcdr m) — second part of a mutable cons cell

1|2

(mcons 1 2)

set-mcar! and set-mcdr!

(set-mcar! pv)
Replaces the car of mutable cons p with v.

(set-mcdr! p v)
Replaces the cdr of mutable cons p with v.

|These should scare you even more then set!! |

> (define pair (mcons 1 2))
> pair

(1.2)

1|2

> (define pair (mcons 1 2))
> pair

(1.2)
> (set-mcar! pair 0)

> (mcar pair)
0 0|1
> (mcdr pair)

2

> (set-mcdr! pair 1)
> pair

(0.1)

Impact of Mutation

* We will need to revise our evaluation rules for
names and application expressions:
substitution model of evaluation no longer
works since values associated with names
change

* We need to be much more careful in our

programs to think about when things happen:
order matters since values change

Charge
* PS5: posted now, due Trext-Wednesday

Monday, 19 October

* Read Chapter 9

* Friday: return Exam 1, Revising our Evaluation
Rules to handle mutation

