
cs1120 Fall 2009

David Evans
http://www.cs.virginia.edu/evans

Lecture 19:

Stateful

Evaluation

Menu

• Stateful Evaluation Rules

• Exam 1

2

Names and Places

A name is a place for storing a value.

define creates a new place

(set! name expr) changes the value in the place name

to the value of expr

mcons creates a mutable pair containing two new

places

(set-mcar! pair expr) changes the value in the mcar

place of pair to the value of expr

(set-mcdr! pair expr) changes the value in the mcdr

place of pair to the value of expr

3

Lambda and Places

(lambda (x) …) also creates a new place named x

The passed argument is put in that place

> (define x 3)

> ((lambda (x) x) 4)

4

> x

3 How are these

places different?

x : 3

x : 4

4

Location, Location, Location

• Places live in frames

• An environment is a frame and a pointer

to a parent environment

• All environments except the global

environment have exactly one parent

environment, global environment has no

parent

• Application creates a new environment

5

Environments

global

environment

> (define x 3)

+ : #<primitive:+>

null? : #<primitive:null?>

The global environment points to the outermost frame. It starts with all

Scheme built-ins defined.

x : 3

6

Stateful Definition Evaluation Rule

A definition creates a new place with the

definition’s name in the frame associated with

the evaluation environment. The value in the

place is value of the definition’s expression.

If there is already a place with the name in the

current frame, the definition replaces the old

place with a new place and value.

7

Stateful Name Evaluation Rule

To evaluate a name expression, search the
evaluation environment’s frame for a place with a
name that matches the name in the expression.

If such a place exists, the value of the name
expression is the value in that place.

Otherwise, the value of the name expression is the
result of evaluating the name expression in the
parent environment. If the evaluation environment
has no parent, the name is not defined and the
name expression evaluates to an error.

8

Evaluating Names

To evaluate a name expression,

search the evaluation

environment’s frame for a place

with a name that matches the

name in the expression.

If such a place exists, the value of

the name expression is the value

in that place.

Otherwise, the value of the name

expression is the result of

evaluating the name expression

in the parent environment. If the

evaluation environment has no

parent, the name is not defined

and the name expression

evaluates to an error.

global

env x : 3

x : 17

y : 3

How are environments like this created?

9

Procedures

global

environment

> (define double (lambda (x) (+ x x)))

+ : #<primitive:+>

null? : #<primitive:null?>

double: ??

x : 3

10

How to Draw a Procedure

• A procedure needs both code and an

environment

– We’ll see why soon

• We draw procedures like this:
Environment

pointer

environment:

parameters: x

body: (+ x x)

11

How to Draw a Procedure

(for artists only)

Environment

pointer

x
(+ x x)

Input parameters

(in mouth) Procedure Body

12

Procedures

global

environment

> (define double

(lambda (x) (+ x x)))

+ : #<primitive:+>

null? : #<primitive:null?>

double:

x : 3

environment:

parameters: x

body: (+ x x)

13

Application

• Old rule: (Substitution model)

Apply Rule 2: Constructed Procedures. To

apply a constructed procedure, evaluate the

body of the procedure with each formal

parameter replaced by the corresponding

actual argument expression value.

14

Stateful Application Rule

(Constructed Procedures)

To apply a constructed procedure:

1. Construct a new environment, whose parent is the

environment of the applied procedure.

2. For each procedure parameter, create a place in the

frame of the new environment with the name of the

parameter. Evaluate each operand expression in the

environment or the application and initialize the value

in each place to the value of the corresponding

operand expression.

3. Evaluate the body of the procedure in the newly

created environment. The resulting value is the value

of the application.

15

1. Construct a new

environment, parent is

procedure’s environment

pointer

2. Make places in that frame

with the names of each

parameter, and operand

values

3. Evaluate the body in the

new environment

global

environment

> (double 4)

8

+ : #<primitive:+>

x : 3

x : 4

(+ x x)

double:

environment:

parameters: x

body: (+ x x)

16

17

x : 3

x : 17

y : 3

What would

create this

environment?

Think about this, we’ll

discuss in Monday’s class...

Exam 1

• Overall: very good

– Average: 93

– Average for Q’s 3,4,8 (defining procs): 8.9

– Average for Q’s 5,6,7,9 (analysis): 7.8

• Main complaints:

– Hard to program without Scheme interpreter

– Too much emphasis on runtime analysis

18

Question 10: count-unique

Define a procedure, count-unique, that takes as input a list

of numbers. It produces as output a number that indicates

the number of unique numbers in the input list. So,

(count-unique (list 1 1 2 0)) should evaluate to 3.

(count-unique (list 2 2 2)) should evaluate to 1.

(count-unique (list 1 2 1 2 1)) should evaluate to 2.

For full credit, your procedure must work correctly for all

possible inputs that are Lists of numbers.

19

count-unique: hard and slow way

(define (count-unique p)

(if (null? p) 0

(+ 1 (count-unique

(list-filter

(lambda (el) (not (= el (car p))))

(cdr p))))))

(define (list-filter test p)

(if (null? p) null

(if (test (car p))

(cons (car p) (list-filter test (cdr p)))

(list-filter test (cdr p)))))

From Chapter 5:

Running time is in θθθθ(N2) where N is number of elements in p.

Worst case: no duplicates.

There are N recursive calls, each calls list-filter which has running time in θ(N).

Assumes = is constant time: only true if elements of p are bounded (always

below some max value)

20

count-unique: easier, faster way

• Observe: if elements are sorted, don’t need to

search entire list to find duplicates

(define (count-unique p)

(- (length p) (count-repeats (sort p <))))

Running time is in θθθθ(N log N).

Body of count-unique applies sort (to a list of length N),

count-repeats (to a list of length N), and length (to a list of

length <= N):

θ(N log N) + θ(N) + θ(N) = θ(N log N)

Assumes: all values in p below some fixed constant C

(needed for < to be constant time).
21

count-unique: “fastest” way

Assumes: all values in p below some fixed constant C

(needed for < to be constant time).

(define C 100)

(define (count-unique p)

(length

(list-filter

(lambda (n) (list-contains? p n))

(intsto C))))

C executions of list-contains? which has running time in θθθθ(N).

Running time is in θθθθ(N).

Is this really the fastest?

22

Do you trust your classmates to follow

the honor expectations in this class?

___ Yes, I trust them completely

___ I worry that there may be a few transgressions, but I believe

the vast majority of the class is honorable and it is fair and

beneficial to rely on this.

___ I think this class places too high a burden on students’

honor, and there are enough dishonorable students that it is

unfair on the honorable students.

___ I have direct knowledge of other students violating the

honor policy on problem sets.

___ I have direct knowledge of other students violating the

honor policy on this exam.

23

0

0

Honor Expectations

24

Trust

Completely,

15

Few

Transgressio

ns, 38

Unfair to

Honorable

Students, 2

Exam 1 Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

<70 70-79 80-89 90-99 >99

No Experience (42

people, Average =

88.6)

Some (15 people,

average = 91.7)

Lots (16 people,

average=105.2)

25

Charge

• Return Exam1 and PS4 now

• Read the Exam1 Comments

– If there are things that don’t make sense after

reading them, come to office hours or send me

email

• You know everything you need for PS5 now

• Next week: programming with mutation

26

