
cs1120 Fall 2009

David Evans
http://www.cs.virginia.edu/evans

Lecture 20:

Programming

with State

2

x : 3

x : 17

y : 3

What would

create this

environment?

From Friday’s class:

> (define x 3)

> ((lambda (x) …) 17)

Stateful Application Rule

3

To apply a constructed procedure:

1. Construct a new environment, whose parent is the

environment of the applied procedure.

2. For each procedure parameter, create a place in the frame

of the new environment with the name of the parameter.

Evaluate each operand expression in the environment or the

application and initialize the value in each place to the value

of the corresponding operand expression.

3. Evaluate the body of the procedure in the newly created

environment. The resulting value is the value of the

application.

4

x : 3

x : 17

y : 3

To apply a constructed procedure:

1. Construct a new environment, whose

parent is the environment of the applied

procedure.

2. For each procedure parameter, create a

place in the frame of the new environment

with the name of the parameter. Evaluate

each operand expression in the

environment or the application and

initialize the value in each place to the

value of the corresponding operand

expression.

3. Evaluate the body of the procedure in the

newly created environment. The resulting

value is the value of the application.

To create this environment,

a procedure whose

environment is the Blue

environment was applied.

> (define x 3)

> ((lambda (x)

((lambda (y) x) 3)

17)

Programming Styles

• Functional Programming

– Program by composing functions

– Substitution model applies

– Problem Sets 1-4

• Imperative Programming

– Programming by changing state

– Requires stateful model of evaluation

– Problem Set 5 and beyond

5

Most programs combine aspects of both styles: even imperative-style

programs still involve composing procedures, and very few programs

are completely functional.

Mapping

Functional Solution: A procedure that takes a

procedure of one argument and a list, and returns

a list of the results produced by applying the

procedure to each element in the list.

(define (list-map f p)

(if (null? p) null

(cons (f (car p))

(list-map f (cdr p)))))

Imperative Solution

A procedure that takes a procedure and a mutable list
as arguments, and replaces each element in the list
with the value of the procedure applied to that
element. It produces no output.

(define (mlist-map! f p)

(if (null? p) (void)

(begin

(set-mcar! p (f (mcar p)))

(mlist-map! f (mcdr p)))))

(define (list-map f p)

(if (null? p) null

(cons (f (car p))

(list-map f (cdr p)))))

Programming with Mutation

> (mlist-map! square (mlist 1 2 3 4))

> (define i4 (mlist 1 2 3 4))

> (mlist-map! square i4)

> i4

(1 4 9 16)

F
u

n
ctio

n
a

l
Im

p
e

ra
tive

> (define i4 (intsto 4))

> (map square i4)

(1 4 9 16)

> i4

(1 2 3 4)

Comparing Cost

9

(define (list-map f p)

(if (null? p) null

(cons (f (car p))

(list-map f (cdr p)))))

(define (mlist-map! f p)

(if (null? p) (void)

(begin

(set-mcar! p (f (mcar p)))

(mlist-map! f (mcdr p)))))

Functional Imperative

Assuming f has constant running

time, running time is in θθθθ(N) where

N is the number of elements in p.

Also has running time in θθθθ(N):

N recursive calls,

constant work each time.

Memory use is in θθθθ(N) where N is

the number of elements: it requires

construction N new cons cells.

Memory use is in O(1) : no new cons

cells are created!

(Aside: because it is tail recursive,

no evaluation stack either.)

Appending

10

(define (list-append p q)

(if (null? p) q

(cons (car p)

(list-append (cdr p) q))))

(define (mlist-append! p q)

(if (null? p) (error “Cannot append to empty list!”)

(if (null? (mcdr p))

(set-mcdr! p q)

(mlist-append! (mcdr p) q))))

Running time in θ(Np), Np is number of elements in p

Number of new cons cells: θ(Np)

Running time in θ(Np), number of elements in p

Number of new cons cells: 0

Does it matter?

11

> (define r1 (random-list 100000))

> (define r2 (random-list 100000))

> (time (begin (list-append r1 r2) true))

cpu time: 110 real time: 122 gc time: 78

#t

> (define m1 (random-mlist 100000))

> (define m2 (random-mlist 100000))

> (time (begin (mlist-append! m1 m2) true))

cpu time: 15 real time: 22 gc time: 0

#t

> (mlength m1)

200000

> (time (begin (mlist-append! m1 m2) true))

cpu time: 47 real time: 45 gc time: 0

#t

> (mlength m1)

(define (random-list n)

(if (= n 0) null

(cons (random 1000) (random-list (- n 1)))))

(define (random-mlist n)

(if (= n 0) null

(mcons (random 1000) (random-mlist (- n 1)))))

Charge

• Reading (finish by next Monday): Science’s

Endless Golden Age by Neil DeGrasse Tyson

• PS5 due one week from today

12

