
Class 23:

Objectifying

Objects

University of Virginia cs1120

David Evans

Menu

• PS6, PS7, Project

• Objects

• PS5 vs. “Real” Databases

Sorry, no Office Hours today! Email me to arrange another time.

I will have my usual office hours tomorrow morning (10:30-11:30).

Remaining Problem Sets

PS6: Programming with Objects

PS7: Implementing Interpreters

P
y

th
o

n

Tutorial: Web Applications (was PS8)

Project:

Build a Dynamic Web Application

Django,

HTML,

SQL

Due 9 November

Posted later today,

Due 30 October

Due last day of class

(7 December)

Project Assignment

• Teams of 1-61 students
– Mostly teams of 3 (need a good reason for a smaller or

larger team)

– You can form your own teams, or be assigned team

– You will be asked to rate your teammates at the end of the
project

• Can be anything you want that:
– Involves interesting computation

– Follows University’s use policies (or on external server)

– Complies with ADA Section 508 (accessible)

Problem: Make an interesting dynamic web site.

PS6: Programming with Objects

PS7: Implementing Interpreters

Project
Build a dynamic web application

PS6

Extra Ambitious PS9

Project

Default Negotiate with me in advance

Exam 2

environment:

parameters: ()

body: (begin (set! x (+ x 1)) x)

from Class 22: nextx
(define x 0)

(define (nextx)

(set! x (+ x 1))

x)

> (nextx)

1

> (set! x 23)

> (next x)

24

global

environment

+ : #<primitive:+>

nextx: x : 24

A Better Counter

• The place that keeps track of the count

should be part of the counter, not part of

the global environment

– Can have more than one counter

– Counter state is encapsulated: can only be

modified by counter procedure

• Can we do this?

Stateful Application Rule:

To apply a constructed procedure:

1. Construct a new environment, whose parent is the

environment of the applied procedure.

2. For each procedure parameter, create a place in the frame

of the new environment with the name of the parameter.

Evaluate each operand expression in the environment or the

application and initialize the value in each place to the value

of the corresponding operand expression.

3. Evaluate the body of the procedure in the newly created

environment. The resulting value is the value of the

application.

A Better Counter

(define (make-counter)

((lambda (count)

(lambda ()

(set! count (+ 1 count))

count))

0))

Sweeter Version

(define (make-counter)

(let ((count 0))

(lambda ()

(set! count (+ 1 count))

count)))

This is easier to read (syntactic sugar), but means the same thing. The place for

count is created because of the application that is part of the let expression.

(let ((Name1 Expression1) (Name2 Expression2)

... (Namek Expressionk))

Expressionbody)

is equivalent to

((lambda (Name1 Name2 . . . Namek)

Expressionbody)

Expression1 Expression2 . . . Expressionk)

(define (make-counter)

(let ((count 0))

(lambda ()

(set! count (+ 1 count))

count)))

> (define mycount

(make-counter))

> (mycount)

1

> (mycount)

2

Draw the environment

after evaluating:

environment:

parameters: ()

body: (lambda () (set! count …)

environment:

parameters: ()

body: ((lambda …

> (define mycount

(make-counter))

> (mycount)

1

> (mycount)

2

> (mycount)

3

global

environment

+ : #<primitive:+>

make-counter:

count : 0

(define (make-counter)

((lambda (count)

(lambda ()

(set! count (+ 1 count))

count))

0))

mycount:

123

Versatile Counter

(define (make-counter)

((lambda (count)

(lambda ()

(set! count (+ 1 count))

count))

0))

How can we make a counter that can do things other than just add 1?

An Even Sweeter Counter

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’reset!) (set! count 0))

((eq? message ’next!)

(set! count (+ 1 count)))

((eq? message ’current) count)

(else

(error "Unrecognized message"))))))

Using Counter

> (define bcounter (make-counter))

> (bcounter 'next)

> (bcounter 'next)

> (bcounter 'next)

> (bcounter 'how-many)

3

> (bcounter 'reset)

> (bcounter 'how-many)

0

Objects

An object packages:

– state (“instance variables”)

– procedures for manipulating and

observing that state (“methods”)

Why is this useful?

Problem-Solving Strategies
• PS1-PS4: Functional Programming

– Focused on procedures

– Break a problem into procedures that can be composed

• PS5: Imperative Programming
– Focused on data

– Design data for representing a problem and procedures
for updating that data

• PS6: “Object-Oriented Programming”
– Focused on objects that package state and procedures

– Solve problem by designing objects that model the
problem

– Lots of problems in real (and imaginary) worlds can be
thought of this way

PS5

How are commercial databases different from

what you implemented for PS5?

UVa’s Integrated Systems Project to convert

all University information systems to use an

Oracle database was originally budgeted for

$58.2 Million (starting in 1999). Actual cost

ended up over $100 Million.

http://www.virginia.edu/isp/

www.virginia.edu/isp/timeline.html

Real Databases
Atomic Transactions

a transaction may involve many modifications to database tables, but the

changes should only happen if the whole transaction happens (e.g., don’t

charge the credit card unless the order is sent to the shipping dept)

Security

limit read/write access to tables, entries and fields

Storage

efficiently store data on disk, backup mechanisms

Scale

support really big data tables efficiently

How big are big databases?

Microsoft TerraServer

Claimed biggest in 1998

Aerial photos of entire US (1 meter resolution)

You are hereYou are here

RecursaRecursa

AmphitheaterAmphitheater

AFC?AFC?

Picture from 2 Apr 1994

You are hereYou are here

Big Databases Today

• Microsoft TerraServer
– 3.3 Terabytes (claimed biggest in 1998)

• Internal Revenue Service
– 150 Terabytes

• Wal-Mart
– > 500 Terabytes (2003)

• Yahoo! (2008)
– 2 Petabytes

– Analyze behavior of 500 M web visitors per month

• National Energy Research Scientific Computing
– 2.6 Petabytes

– Atomic energy research, high-energy physics

– Each particle collision generate > 30 KB

1 Exabyte = 1000 Petabytes = 1018 bytes

Lots more information to be collected: telephone calls in one year ~ 20 Exabytes

1 Petabyte = 1000 Terabytes

= 1015 bytes

How much work?

table-select is in Θ(n) where n is the number of

entries in the table

Would your table-select work for Wal-Mart?

If 1M entry table takes 1s, how long would it take

Wal-Mart to select from >500TB ~ 2 Trillion Entries?

2 000 000s ~ 23 days

How do expensive databases perform table-select

so much faster?
Indexing is the key! See Section 8.2.3

Making Objects in Scheme

(define (make-counter)

(let ((count 0))

(lambda (message)

(cond ((eq? message ’reset!) (set! count 0))

((eq? message ’next!)

(set! count (+ 1 count)))

((eq? message ’current) count)

(else

(error "Unrecognized message"))))))

Python Version

class Counter:

def __init__(self):

self.count = 0

def reset(self):

self.count = 0

def current(self):

return self.count

def advance(self):

self.count = self.count + 1

class defines a new class

The __init__ method is special: it constructs

a new object of the class.

self is the object we are creating (for __init__)

or manipulating (for the other methods).

self.count = 0 (like (let ((count 0)) …)

In __init__: creates a new place named

count as part of this object’s frame, and

initializes its value to 0.

Python’s built-in support for objects should (soon) make this easier to

read and understand than the Scheme object system.

Charge

• PS6 will be posted tonight

• Wednesday: Python, Object-Oriented

Programming

• Friday: “Golden Age of Science”

Start thinking about Project ideas
If you want to do an “extra ambitious” project

(instead of PS7) convince me your idea is

worthy before November 1

