
Class 24: Class 24:

Programming Programming

with Objectswith Objects

University of Virginia cs1120

David Evans

Menu

• Python

• Programming with Objects

• Inheritance

Why learn

Python?

Reason 1: Vocational Skill

Job listings at monster.com (20 October 2009)

Keyword All US Virginia

Only

Typical

Salary

Python 527 38 $60-180K

Java 5000+ 535 $70-140K

SQL 5000+ 783 $60-150K

Scheme 83 0 $100-999K

“Sch
e

m
e

” Jo
b

s

Reason 1: Vocational Skill

Job listings at monster.com (20 October 2009)

Keyword All US Virginia

Only

Typical

Salary

Python 527 38 $60-180K

Java 5000+ 535 $70-140K

SQL 5000+ 783 $60-150K

Scheme 83 0 $100-999K

Reason 2: Expanding Minds

The more languages you know, the more

different ways you have of expressing ideas and

for thinking about (and solving) problems.
“Jamais Jamais Jamais” from Harmonice Musices Odhecaton A.

Printed by Ottaviano Dei Petrucci in 1501 (first music with

movable type)

J S Bach, “Coffee Cantata”,

BWV 211 (1732)
www.npj.com/homepage/teritowe/jsbhand.html

“Jamais Jamais Jamais” from

Harmonice Musices Odhecaton A.

(1501)

Reason 3: Deepening Understanding

By seeing how the same concepts we

encountered in Scheme are implemented by

a different language, you will understand

those concepts better (especially

procedures, assignment, data abstraction).

Reason 4: Building Confidence

By learning Python (mostly) on your own,

the next time you encounter a problem that

is best solved using a language you don’t

know, you will be confident you can learn it

(rather than trying to use the wrong tool to

solve the problem).

This is also important for taking cs2110 this Spring:

assumes you can learn Java on your own.

Reason 5: Fun

Programming in Python is fun (possibly even more fun

than programming in Scheme!)

Especially because:

• It is an elegant and simple language

• Most programs mean what you think they mean

• It is dynamic and interactive

• It can be used to easily build web applications

• It is named after Monty Python’s Flying Circus

• It was designed by someone named Guido.

Python

A universal programming language
– Everything you can compute in Scheme you can compute

in Python, and vice versa

– Chapter 11/PS7: implement a Scheme interpreter in
Python

– Chapter 12: more formal definition of a universal PL

Imperative Language
– Designed to support a programming where most of the

work is done using assignment statements: x = e

Object-Oriented Language
– All data are objects

– Built in support for classes, methods, inheritance

Learning New Languages

Syntax: Where the {,%;!,$, etc. all go

If you can understand a BNF grammar, this is easy

(Okay, it still takes some getting used to a new syntax…)

Semantics: What does it mean

Learning the evaluation rules

Harder, but most programming languages have very similar
evaluation rules (but the subtle differences can cause lots of
problems)

Style: What are the idioms and customs of experienced
programmers in that language?

Takes many years to learn - need it to be a “professional” Python
programmer, but not to make a useful program

Python If

Instruction ::= if (Expression) : BlockConsequent

else: BlockAlternate

Evaluate Expression. If it evaluates to a

true value, evaluate the BlockConsequent ;

otherwise, evaluate the BlockAlternate.

Similar to (if Expression (begin BlockConsequent) (begin BlockAlternate))

Differences:

Indenting and new lines matter!

Changing the indentation changes meaning of code

What is a “true value”:

Scheme: anything that is not false.

Python: anything that is not False, None, 0, an empty string or container

If Example

if []:

print "Empty is true!"

else:

print "Empty is false!"

Empty is false!

Learning Python

• We will introduce (usually informally) Python
constructs in class as we use them, example
code in PS6

• The “Schemer’s Guide to Python” is an
introduction to Python: covers the most
important constructs you need for PS6, etc.

• Course book: Chapter 11 introduces Python

– Read ahead Section 11.1

• On-line Python documentation

Making Objects

In Washington, it’s dog eat dog. In

academia, it's exactly the opposite.

Robert Reich

class Dog:

def bark(self):

print “wuff wuff wuff wuff”

ClassDefinition ::= class Name:

FunctionDefinitions

Making a Dog

class Dog:

def bark(self):

print "wuff wuff wuff wuff"

spot = Dog() AssignmentStatement ::= Variable = Expression

Python assignments are like both define and set!.

If the Variable name is not yet defined, it creates a new place.

The value in the named place is initialized to the value of the Expression.

Python Procedures

class Dog:

def bark(self):

print "wuff wuff wuff wuff"

FunctionDefinition ::= def Name (Parameters): Block

Parameters ::= ε | SomeParameters

SomeParameters ::= Name | Name, SomeParameters

Block ::= Statement

Block ::= <newline> indented(Statements)

Statements ::= Statement <newline> MoreStatments

MoreStatements ::= ε | Statement <newline> MoreStatments

Some Python Procedures
FunctionDefinition ::= def Name (Parameters): Block

Parameters ::= ε | SomeParameters

SomeParameters ::= Name | Name, SomeParameters

Block ::= Statement

Block ::= <newline> indented(Statements)

Statements ::= Statement <newline> MoreStatments

MoreStatements ::= ε | Statement <newline> MoreStatments

def square(x):

return x * x

def bigger(a,b):

if a > b:

return a

else:

return b

Whitespace Matters!

def bigger(a,b):

if a > b:

return a

else:

return b

def bigger(a,b):

if a > b:

return a

else:

return b

File "<pyshell#1>", line 4

else:

^

IndentationError: unindent does not

match any outer indentation level

Python requires you to format your code structurally!

Barking: Invoking Methods

class Dog:

def bark(self):

print "wuff wuff wuff wuff"

spot = Dog()

spot.bark(“Hello”)

wuff wuff wuff wuff

ApplicationStatement ::= Name (Arguments)

Arguments ::= ε | MoreArguments

MoreArguments ::= Argument , MoreArguments

MoreArguments ::= Argument

Argument ::= Expression

<obj>.<method>(<arguments>)

Invoke method on obj. The obj will be the first (self) parameter to the method.

Object Lingo

“Apply a procedure” :: “Invoke a method”

We apply a procedure to parameters.

We invoke a method on an object,

and pass in parameters.

Dogs with Names

class Dog:

def __init__(self, n):

self.name = n

__init__ is a constructor

It creates a new object of the type.

It is called when Dog(n) is evaluated.

spot = Dog(“Spot”)

spot.name

Spot

bo = Dog(“Bo”)

bo.name

Bo

Summary

• An object packages state and procedures.

• A class provides procedures for making and
manipulating a type of object.

• The procedures for manipulating objects are
called methods. We invoke a method on an
object.

• Friday: Inheritance

• Monday: Excursion on Exponential Growth

– Please ready Tyson essay before Monday!

