
Class 25: Class 25:

Python, Objects, Python, Objects,

Bombs, and Bombs, and

InheritanceInheritance

University of Virginia cs1120

David Evans

Menu

• PS5: end-auction! running time

• Lists in Python

• Inheritance

end-auction!

(define (end-auction!)

(mmap

(lambda (item-entry)

(let ((item-name (list-get-element item-entry (table-field-number items 'item-name))))

(let ((high-bid (get-highest-bid item-name)))

(if (null? high-bid)

(printf "No bids on ~a.~n“ (list-get-element item-entry (table-field-number items

'item-name)))

(printf "Congratulations ~a! You have won the ~a for $~a.~n"

(list-get-element high-bid (table-field-number bids 'bidder-name))

item-name

(list-get-element high-bid (table-field-number bids 'amount)))

(list-get-element high-bid (table-field-number bids 'amount))))))

(table-entries items))))

mmap: N applications of mapping procedure

list-get-element running time is in Θ(N)

get-highest-bid running time is in Θ(N)

Overall running time:

N * (Θ(N) + Θ(N)) = Θ(N2)

WRONG: need to be careful what N means!

end-auction!

(define (end-auction!)

(mmap

(lambda (item-entry)

(let ((item-name (list-get-element item-entry (table-field-number items 'item-name))))

(let ((high-bid (get-highest-bid item-name)))

(if (null? high-bid)

(printf "No bids on ~a.~n“ (list-get-element item-entry (table-field-number items

'item-name)))

(printf "Congratulations ~a! You have won the ~a for $~a.~n"

(list-get-element high-bid (table-field-number bids 'bidder-name))

item-name

(list-get-element high-bid (table-field-number bids 'amount)))

(list-get-element high-bid (table-field-number bids 'amount))))))

(table-entries items))))

mmap: t applications of mapping procedure

t is the number of entries in the items table

list-get-element running time is in Θ(N) => constant time

N is the number of elements in input list:

here, number of fields in items: constant

get-highest-bid running time is in Θ(N) => Θ(b)

N is number of entries in bids table, b

Overall running time:

t * (O(1) + Θ(b)) = Θ(tb) where

t is number of items, b is number of bids

Python Lists

Built-in datatypes for both mutable lists [] and

immutable tuples ()

>>> m = range(1, 1000)

>>> m[0]

1

>>> m[-1]

999

>>> len(m)

999

>>> m[1:]

[2, ..., 999]

range(1,1000) ∼ (intsto 999)

m[0] ∼ (mcar m)

Python lists can access any element in

approx. constant time!

m[1:] ∼ (mcdr m) ?

len is also constant time

Is m[1:] like mcdr?

>>> m1 = m[1:]

>>> m1[0]

2

>>> m[1]

2

>>> m1[0] = 3

>>> m[1]

2

m[1:] is a new copy of the list,

except for the first element.

Uses Θ(N) time and space!

Implementing list-map in Python

def schemish_list_map(f, p):

if not p:

return []

else:

return [f(p[0])] + schemish_list_map(f, p[1:])

“Literal” translation...not a good way to do this.

Running time is in Θ(N2) where N is number of elements in p.

Note: there is a built-in map in Python.

Pythonic Mapping

def mlist_map(f, p):

for i in range(0, len(p)):

p[i] = f(p[i])

return p

Unlike the previous one, this mutates p.

Inheritance

There are many kinds of Dogs…

class Dog:

def __init__(self, n):

self.name = n

def bark(self):

print “wuff wuff wuff wuff”

class TalkingDog (Dog):

def speak(self, stuff):

print stuff

Subclasses

ClassDefinition ::= class SubClassName (SuperClassName) :

FunctionDefinitions

class TalkingDog (Dog):

def speak(self, stuff):

print stuff

TalkingDog is a subclass of Dog.

Dog is the superclass of TalkingDog.

Every Dog has its Day

>>> bo = Dog('Bo')

>>> scooby = TalkingDog('Scooby Doo')

>>> scooby.speak('Ta-da!')

Ta-da!

>>> bo.speak('Ta-da!')

Traceback (most recent call last):

File "<pyshell#11>", line 1, in <module>

bo.speak('Ta-da!')

AttributeError: Dog instance has no attribute 'speak‘

>>> scooby.bark()

wuff wuff wuff wuff

class Dog:

def __init__(self, n):

self.name = n

def bark(self):

print “wuff wuff wuff wuff”

class TalkingDog (Dog):

def speak(self, stuff):

print stuff

Speaking about Inheritance

Inheritance is using the definition of

one class to define another class.

TalkingDog inherits from Dog.

TalkingDog is a subclass of Dog.

The superclass of TalkingDog is Dog.

Dog

TalkingDog

These all mean the same thing.

PS6

Make an adventure game

programming with objects

Many objects in our game have

similar properties and behaviors, so

we use inheritance.

PS6 Classes SimObject

PhysicalObject Place

MobileObject

OwnableObject Person

Student PoliceOfficer

SimObject

PhysicalObject Place

MobileObject

OwnableObject Person

Student PoliceOfficer

class SimObject:

def __init__(self, name):

self.name = name

def note(self, msg):

print "%s: %s" % (self, msg)

class PhysicalObject (SimObject):

def __init__(self, name):

SimObject.__init__(self, name)

self.location = None

def install(self, loc):

self.note ("Installing at " + str(loc))

self.location = loc

loc.add_thing(self) class MobileObject (PhysicalObject):

def change_location(self, loc):

self.location.remove_thing(self)

loc.add_thing(self)

self.location = loc

SimObject

PhysicalObject Place

MobileObject

OwnableObject Person

Student PoliceOfficer

PS6 Objects

Place(‘Cabal Hall’)

aph = Student(‘Alyssa P. Hacker’)

An object that is an

instance of the Place class.

Object-Oriented Summary
• An object packages state and procedures.

• A class provides procedures for making and
manipulating a type of object.

• The procedures for manipulating objects are
called methods. We invoke a method on an
object.

• Inheritance allows one class to refine and reuse
the behavior of another. This is a good thing.

• Friday: Excursion on Exponential Growth

– Please ready Tyson essay before Friday!

