Class 27: Taming of the Plagarist

¢s1120 Fall 2009
David Evans

Menu

* Python Dictionaries
* History of Object-Oriented Programming

PSé6-related talk tomorrow:
Thursday, October 29 at 2:00 p.m, Scholars’ Lab in the Alderman Library

“Disruptive Construction of Game Worlds”

Shane Liesegang (UVa 2004 CogSci major/CS minor)

Bethesda Softworks
For extra credit on PS6: mention something in your answer to Question 8 that
you learned from this talk.

Python Dictionary

Dictionary abstraction provides a lookup table.
Each entry in a dictionary is a

<key, value>

pair. The key must be an immutable object.
The value can be anything.

dictionary[key] evaluates to the value associated
with key. Running time is approximately
constant!

Dictionary Example

>>>d = {} ‘ Create a new, empty dictionary ‘

>>> d['UVa'] = 1818 | Addan entry: key ‘UVa’, value 1818 ‘
>>>d['UVa'] = 1819 | Update the value: key ‘UVa’, value 1819 ‘
>>> d['Cambridge'] = 1209

>>>d['UVa']

1819

>>> d['Oxford']

Traceback (most recent call last):
File "<pyshell#93>", line 1, in <module>
d['Oxford']
KeyError: 'Oxford'

Shoppng - Buy

NEWS | COMMENT | BUSINESS | MONEY | SPORT | LIFE&STYLE | TRAVEL | DF

=\ =
FILI | MUSIC | STAGE | VISUAL ARTS | TV & RADIO | BOOKS | THETLS | GAMES & PUJ D :/A D N 5
NS AN N3 Breaking news and must read storics

Wheream |2 > Home > Ats & Entertainment > Stage.

From The Times G
October 12,2009

Computer program proves Shakespeare
didn't work alone, researchers claim

ot st e

Hark! Software linketh play to Shakespeare

028

JackManem

v > THEATRE
The 400-year-old mystery of > couEDy
whether William Shakespeare 3
was the author of an £
unattibuted play about Edward
Il may have been solved by a
computer program designed to
detect plagiarism

> OPERA
> DANCE

> The 50 Bigouum
10 New York Eimes

Sir Brian Vickers, an authority
on Shakespeare at the Institute
of English Studies at the
University of London, believes
that a comparison of phrases
used in The Reign of King
Edward 1] with Shakespeare’s
early works proves conclusively
that the Bard wrote the play in
collaboration with Thomas Kyd,
one of the most popular
playwrights of his day.

ART&DESGN | BOOKS Sunday Book Review Best Selers | DANCE MOVES.
WEEKLY AT 4R7s, 6REFLY

. Shakespeare Wrote It? Computer Says Yes

& Rect

® Twrrer

/| When not being used to bust cheating college students, a computer

The professor used software
program that detects plagiarism may have helped show that 2 e

called Pi@giarism, developed
by the University of Maastricht

Shakespeare, below, was an author of an unattributed play about [s=oTo
to detect cheating students, to

Edward I11, The Times of London reported. Brian Vickers, a Frone

compare language used in Ey
Echverd 11l — published N professor at the Institute of English Studies at the University of

Iy in 1596, when Shak 32— vith oth Signup fo ;s i @ repriTs
anonymously in 1596, when Shakespeare was 32 — vith other our Arts o London, told the newspaper that a comparison of the language in

plays of the period ! . X .
“The Reign of King Edward I11,” published anonymously in 1596, @ sware

Histogramming

Define a procedure histogram that takes a text string
as its input, and returns a dictionary that maps each
word in the input text to the number of occurences in
the text.

Useful string method: split()
outputs a list of the words in the string

>>>'here we go'.split()
['here’, 'we’, 'go']

>>> d = histogram(declaration)
>>> show_dictionary(d)

def histogram(text):

d = {} of: 79
words = text.split() tho%ZG
. to:
for w in words: and: 55
ifW in d: our: 25
their: 20
d[W] = d[W] +1 has: 20
. for: 20
else. in: 18
d[W] = 1 He: 18
returnd a:15
these: 13

Showing the Dictionary

def show_dictionary(d):
keys = d.keys()
okeys = sorted(keys, lambda k1, k2: d[k2] - d[k1])
for k in okeys:
print str(k) + ": " + str(d[k])

Author Fingerprinting
(aka Plagarism Detection)

“The program identifies phrases of three
words or more in an author’s known work
and searches for them in unattributed
plays. In tests where authors are known to
be different, there are up to 20 matches
because some phrases are in common
usage. When Edward Il was tested against
Shakespeare’s works published before 1596
there were 200 matches.”

The Times, 12 October 2009

def histogram(text):
d={}
words = text.split()
for w in words:

if win d:
def phrase_collector(text, plen): elsde[-W] =d[w] +1
d={ P
words = text.split() dw] =1
_ P returnd

words = map(lambda s: s.lower(), words)
for windex in range(0, len(words) - plen):
phrase = tuple(words[windex:windex+plen])
if phrase in d:
d[phrase] = d[phrase] + 1
else:
d[phrase]=1
returnd

def common_phrases(d1, d2):
keys = d1.keys()
common = {}
for k in keys:
ifkin d2:
common(k] = (d1[k], d2[k])
return common

def get_my_homepage():
return urlopen('http://www.cs.virginia.edu/evans/index.html').read()

>>> ptj = phrase_collector(declaration, 3)

>>> pde = phrase_collector(get_my_homepage(), 3)
>>> ¢ = common_phrases(ptj, pde)

>>> |len(c)

0

>>> pde = phrase_collector(get_my_homepage(), 2)
>>> ptj = phrase_collector(declaration, 2)
>>> ¢ = common_phrases(ptj, pde)
>>> show_phrases(c)

(‘principles’, 'and'): (1, 1)

(‘has', 'kept'): (1, 1)

('has', 'been'): (1, 1)

(‘and', 'our'): (1, 1)

('design’, 'to'): (1, 1)

('not’, 'be’): (1, 1)

(‘of', 'all'): (1, 1)

('they', 'have'): (1, 1)

('by', 'the'): (1, 1)

(‘protection’, 'of'): (1, 1)

(‘with', 'a'): (1, 1)

(‘as', 'we'): (1,1)

('is', 'the'): (2, 1)

('them', 'to'): (1, 2)

('to', 'a'): (1, 2)

('the', 'state'): (1, 2)

(‘people’, 'to'): (1, 2)

(‘of' 'the’): (4, 12)

Possible Project Idea

Make a website that allows visitors to
compare text samples for common phrases.

me by Monday (November 2). You should have a team,

idea for a project, and justification explaining why it is
“super ambitious”.

History of
Object-Oriented Programming

Object-oriented programming is an exceptionally
bad idea which could only have originated in
California. Edsger Dijkstra

I don’t know how many of you have ever
met Dijkstra, but you probably know that
arrogance in computer science is measured
in nano-Dijkstras. Alan Kay

The people who are the worst at
programming are the people who
refuse to accept the fact that their
brains aren't equal to the task.
Their egos keep them from being
great programmers. The more you
learn to compensate for your
small brain, the better a
programmer you'll be. The more
humble you are, the faster you'll
improve.

Edsger Dijkstra, 1972 Turing Award

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF

Computing in World War Il

Cryptanalysis (Lorenz: Collossus at Bletchley
Park, Enigma: Bombes at Bletchley, NCR in US)

Ballistics Tables, calculations for Hydrogen
bomb (ENIAC at U. Pennsylvania)

Batch processing: submit a program and its
data, wait your turn, get a result

Building a flight simulator required a different type of computing:

interactive computing

Pre-History:
MIT’s Project Whirlwind (1947-1960s)
WS Lom— S

Jay Forrester

. AR B

o B
YT ryYyY Yy Lad
L s i pnaraitudt

Magnetic Core Memory

(first version used vacuum tubes)

kilotons

Short or Endless Golden Age of
Nuclear Weapons?

Hiroshima (12kt), Nagasaki (20kt)

60000 d
Tsar Bomba (50 Mt, largest ever = 10x all of WWI1)
50000 -
40000
30000
20000
First H-Bomb (10Mt) B83 (1.2Mt), largest
10000 in currently active arsenal
o ke -
1940 1950 1960 1970 1980 1990 2000 2010 2020

Semi-Automatic Ground
Environment (SAGE)
MIT/IBM, 1950-1982

Coordinate radar stations
in real-time to track
incoming bombers

Total cost: ~S55B

(more than Manhattan
Project)

R-7 Semyorka

First intercontinental ballistic missile
First successful test: August 21, 1957

Sputnik: launched by R-7, October 4, 1957

What does all this have to do with
object-oriented programming?

(To be continued Friday...)

Charge

* PS6 due Friday
* Friday: Trick-or-Treat Protocols, Interpreters

PS6-related talk tomorrow:
Thursday, October 29 at 2:00 p.m, Scholars’ Lab in the Alderman Library

“Disruptive Construction of Game Worlds”
Shane Liesegang (UVa 2004 CogSci major/CS minor)
Bethesda Softworks

For extra credit on PS6: mention something in your answer to Question
8 that you learned from this talk.

