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Python Dictionary

Dictionary abstraction provides a lookup table.
Each entry in a dictionary is a

<key, value>

pair. The key must be an immutable object.
The value can be anything.

dictionary[key] evaluates to the value associated
with key. Running time is approximately
constant!

Dictionary Example

>>>d = {} ‘ Create a new, empty dictionary ‘

>>> d['UVa'] = 1818 | Addan entry: key ‘UVa’, value 1818 ‘
>>>d['UVa'] = 1819 | Update the value: key ‘UVa’, value 1819 ‘
>>> d['Cambridge'] = 1209

>>>d['UVa']

1819

>>> d['Oxford']

Traceback (most recent call last):
File "<pyshell#93>", line 1, in <module>
d['Oxford']
KeyError: 'Oxford'
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Histogramming

Define a procedure histogram that takes a text string
as its input, and returns a dictionary that maps each
word in the input text to the number of occurences in
the text.

Useful string method: split()
outputs a list of the words in the string

>>>'here we go'.split()
['here’, 'we’, 'go']

>>> d = histogram(declaration)
>>> show_dictionary(d)

def histogram(text):

d = {} of: 79
words = text.split() tho%ZG
. to:
for w in words: and: 55
ifW in d: our: 25
their: 20
d[W] = d[W] +1 has: 20
. for: 20
else. in: 18
d[W] = 1 He: 18
returnd a:15
these: 13

Showing the Dictionary

def show_dictionary(d):
keys = d.keys()
okeys = sorted(keys, lambda k1, k2: d[k2] - d[k1])
for k in okeys:
print str(k) + ": " + str(d[k])

Author Fingerprinting
(aka Plagarism Detection)

“The program identifies phrases of three
words or more in an author’s known work
and searches for them in unattributed
plays. In tests where authors are known to
be different, there are up to 20 matches
because some phrases are in common
usage. When Edward Il was tested against
Shakespeare’s works published before 1596
there were 200 matches.”

The Times, 12 October 2009

def histogram(text):
d={}
words = text.split()
for w in words:

if win d:
def phrase_collector(text, plen): elsde[-W] =d[w] +1
d={ P
words = text.split() dw] =1
_ P returnd

words = map(lambda s: s.lower(), words)
for windex in range(0, len(words) - plen):
phrase = tuple(words[windex:windex+plen])
if phrase in d:
d[phrase] = d[phrase] + 1
else:
d[phrase]=1
returnd

def common_phrases(d1, d2):
keys = d1.keys()
common = {}
for k in keys:
ifkin d2:
common(k] = (d1[k], d2[k])
return common

def get_my_homepage():
return urlopen('http://www.cs.virginia.edu/evans/index.html').read()

>>> ptj = phrase_collector(declaration, 3)

>>> pde = phrase_collector(get_my_homepage(), 3)
>>> ¢ = common_phrases(ptj, pde)

>>> |len(c)

0




>>> pde = phrase_collector(get_my_homepage(), 2)
>>> ptj = phrase_collector(declaration, 2)
>>> ¢ = common_phrases(ptj, pde)
>>> show_phrases(c)

(‘principles’, 'and'): (1, 1)

(‘has', 'kept'): (1, 1)

('has', 'been'): (1, 1)

(‘and', 'our'): (1, 1)

('design’, 'to'): (1, 1)

('not’, 'be’): (1, 1)

(‘of', 'all'): (1, 1)

('they', 'have'): (1, 1)

('by', 'the'): (1, 1)

(‘protection’, 'of'): (1, 1)

(‘with', 'a'): (1, 1)

(‘as', 'we'): (1,1)

('is', 'the'): (2, 1)

('them', 'to'): (1, 2)

('to', 'a'): (1, 2)

('the', 'state'): (1, 2)

(‘people’, 'to'): (1, 2)

(‘of' 'the’): (4, 12)

Possible Project Idea

Make a website that allows visitors to
compare text samples for common phrases.

me by Monday (November 2). You should have a team,

idea for a project, and justification explaining why it is
“super ambitious”.

History of
Object-Oriented Programming

Object-oriented programming is an exceptionally
bad idea which could only have originated in
California. Edsger Dijkstra

I don’t know how many of you have ever
met Dijkstra, but you probably know that
arrogance in computer science is measured
in nano-Dijkstras. Alan Kay

The people who are the worst at
programming are the people who
refuse to accept the fact that their
brains aren't equal to the task.
Their egos keep them from being
great programmers. The more you
learn to compensate for your
small brain, the better a
programmer you'll be. The more
humble you are, the faster you'll
improve.

Edsger Dijkstra, 1972 Turing Award

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD340.PDF

Computing in World War Il

Cryptanalysis (Lorenz: Collossus at Bletchley
Park, Enigma: Bombes at Bletchley, NCR in US)

Ballistics Tables, calculations for Hydrogen
bomb (ENIAC at U. Pennsylvania)

Batch processing: submit a program and its
data, wait your turn, get a result

Building a flight simulator required a different type of computing:

interactive computing

Pre-History:
MIT’s Project Whirlwind (1947-1960s)
WS Lom— S

Jay Forrester
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Magnetic Core Memory

(first version used vacuum tubes)
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Short or Endless Golden Age of
Nuclear Weapons?

Hiroshima (12kt), Nagasaki (20kt)
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Semi-Automatic Ground
Environment (SAGE)
MIT/IBM, 1950-1982

Coordinate radar stations
in real-time to track
incoming bombers

Total cost: ~S55B

(more than Manhattan
Project)

R-7 Semyorka

First intercontinental ballistic missile
First successful test: August 21, 1957

Sputnik: launched by R-7, October 4, 1957

What does all this have to do with
object-oriented programming?

(To be continued Friday...)
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