
Class 28: 

Interpreters

cs1120 Fall 2009

David Evans

Menu

• Introduction to Interpreters

• History of Object-Oriented Programming 

(time permitting)

“Trick or Treat” Protocols “Trick or Treat” Protocols

• Trick-or-Treater must convince victim that 

she poses a credible threat

• Need to prove you know are a qualified 

tricker

• But, revealing trickiness shouldn’t allow 

victim to impersonate a tricker

Except around Halloween, this is called an “authentication protocol”.

Trick-or-Treat

Trickers?

“Trick or Treat?”

“Prove it!”

“The magic word is: shazam!”

Victim

Any problems with this?

Cryptographic Hash Functions

One-way

Given h, it is hard to find x

such that H(x) = h.

Collision resistance

Given x, it is hard to find y ≠ x

such that H(y) = H(x).



Example One-Way-ish Function

Input: two 100 digit numbers, x1 and x2

Output: the middle 100 digits of x1× x2

Given x = (x1, x2): easy to calculate f (x).

Given h = f (x): hard to find an z such h = f (z).

“Easy” means there is a procedure with running 

time in O(N2) where N is number of digits

“Hard” means (we hope) the fastest possible 

procedure has running time in Ω(2N) .

Trick-or-Treat

Trickers?

“Trick or Treat?”, 

H (secret)

Trickers

Bureau

H (secret)

Valid!

Ouch!  Now victim knows

enough to be a tricker: can just replay 

H (secret) to the next victim.

Trick-or-Treat

Trickers?

“Trick or Treat?”

Trickers

Bureau

R, Z

Valid!

Challenge: Z

R = H (secret + Z)

Trick-or-Treating 

without Calling the Tricker’s Bureau

TRICKER’S LICENSE

You know what you need to survive tomorrow....we’ll 

talk more about how this works on the web later.

Implementing

Interpreters

Problem Set 7: posted today, due Monday 9 November.

• Understand the Charme interpreter (described in Chapter 11)

• Modify it to create a new language

Building a Language

Design the grammar

What strings are in the language?

Use BNF to describe all the strings in the language

Make up the evaluation rules

Describe what every string in the language means

Build an evaluator

Implement a procedure that takes a string in the 

language as input and an environment and outputs its 
value:

meval: String × Environment → Value



Is this an exaggeration?

It is no exaggeration to regard this as 

the most fundamental idea in 

programming:

The evaluator, which determines 

the meaning of expressions in the 

programming language, is just 

another program.

To appreciate this point is to change 

our images of ourselves as 

programmers.  We come to see 

ourselves as designers of languages, 

rather than only users of languages 

designed by others.

Abelson and Sussman, 

Structure and Interpretation of 

Computer Programs (p. 360)

Building an Evaluator

To build an evaluator we need to:

– Figure out how to represent data in programs

What is a procedure, frame, environment, etc.

– Implement the evaluation rules

For each evaluation rule, define a procedure that 

follows the behavior of that rule.

Next: we’ll look at a high-level how the application rule is implemented

Next week and Chapter 11: detailed walk-through of the interpreter

def meval(expr, env):

if isPrimitive(expr):

return evalPrimitive(expr)

elif isIf(expr):             

return evalIf(expr, env) 

elif isDefinition(expr):                

evalDefinition(expr, env)

elif isName(expr):

return evalName(expr, env)

elif isLambda(expr):

return evalLambda(expr, env)

elif isApplication(expr):

return evalApplication(expr, env)

else:

error ('Unknown expression type: ' + str(expr))

Core of the 

evaluator:

meval To apply a constructed procedure:

1. Construct a new environment, whose parent is the 

environment of the applied procedure.

2. For each procedure parameter, create a place in the frame 

of the new environment with the name of the parameter.  

Evaluate each operand expression in the environment of the 

application and initialize the value in each place to the value 

of the corresponding operand expression.

3. Evaluate the body of the procedure in the newly created 

environment. The resulting value is the value of the 

application.

Stateful Application Rule

EvalEval

ApplyApply

Eval and 

Apply are 

defined in 

terms of each 

other.

To apply a constructed procedure:

1. Construct a new environment, whose 

parent is the environment of the 

applied procedure.

2. For each procedure parameter, create 

a place in the frame of the new 

environment with the name of the 

parameter.  Evaluate each operand 

expression in the environment of the 

application and initialize the value in 

each place to the value of the 

corresponding operand expression.

3. Evaluate the body of the procedure in 

the newly created environment. The 

resulting value is the value of the 

application.

evalApplication

def evalApplication(expr, env):

subexprs = expr

subexprvals = map (lambda sexpr: meval(sexpr, env), subexprs)

return mapply(subexprvals[0], subexprvals[1:])



To apply a constructed procedure:

1. Construct a new environment, whose 

parent is the environment of the 

applied procedure.

2. For each procedure parameter, create 

a place in the frame of the new 

environment with the name of the 

parameter.  Evaluate each operand 

expression in the environment of the 

application and initialize the value in 

each place to the value of the 

corresponding operand expression.

3. Evaluate the body of the procedure in 

the newly created environment. The 

resulting value is the value of the 

application.

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)): ...

elif isinstance(proc, Procedure):

params = proc.getParams()

newenv = Environment(proc.getEnvironment())

...

class Environment:

def __init__(self, parent):

self._parent = parent

self._frame = {}

def addVariable(self, name, value): ...

def lookupVariable(self, name): ...

To apply a constructed procedure:

1. Construct a new environment, whose 

parent is the environment of the 

applied procedure.

2. For each procedure parameter, create 

a place in the frame of the new 

environment with the name of the 

parameter. Evaluate each operand 

expression in the environment of the 

application and initialize the value in 

each place to the value of the 

corresponding operand expression.

3. Evaluate the body of the procedure in 

the newly created environment. The 

resulting value is the value of the 

application.

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)): ...

elif isinstance(proc, Procedure):

params = proc.getParams()

newenv = Environment(proc.getEnvironment())

for i in range(0, len(params)):

newenv.addVariable(params[i], operands[i])        

...

To apply a constructed procedure:

1. Construct a new environment, whose 

parent is the environment of the 

applied procedure.

2. For each procedure parameter, create 

a place in the frame of the new 

environment with the name of the 

parameter.  Evaluate each operand 

expression in the environment of the 

application and initialize the value in 

each place to the value of the 

corresponding operand expression.

3. Evaluate the body of the procedure in 

the newly created environment. The 

resulting value is the value of the 

application.

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)): ...

elif isinstance(proc, Procedure):

params = proc.getParams()

newenv = Environment(proc.getEnvironment())

for i in range(0, len(params)):

newenv.addVariable(params[i], operands[i])        

return meval(proc.getBody(), newenv)        

Charge

• Read Chapter 11

• PS7 posted today, due 

Monday, Nov 9

Remember to make 

“Trick-or-Treaters” to 

solve your challenge!


