
Class 3:

Rules of

Evaluation

David Evans

cs1120 Fall 2009

Menu

• Questions from Notes

– Computing photomosaics, non-recursive

languages, hardest language elements to learn

• Scheme’s Rules of Evaluation

– (break: Survey Responses)

2

If it takes 60 seconds to compute a photomosaic for

Problem Set 1 today on a typical PC, estimate how long it

will take cs1120 students in 2012 to compute the same

photomosaic? How long will it take in 2015?

> (/ (* (- 2012 2009) 12) 18)

2

> (/ 60 (* 2 2))

15

> (/ (* (- 2015 2009) 12) 18)

4

> (/ 60 (* 2 2 2 2))

15/4

> (exact->inexact (/ 60 (* 2 2 2 2)))

3.75

Difference in years * 12 = number of months

Number of months / 18 = number of doublings

according to Moore’s Law

60 seconds today, 2 doublings by 2012

15 seconds in 2012

60 seconds today, 4 doublings by 2015

3.75 seconds in 2015

Reality check:

Moore’s “law” is just

an “observation”.

3

Are there any non-recursive natural

languages? What would happen to a society

that spoke one?

Not for humans at least.

They would run out of original things to say.

Chimps and Dolphins are able to learn non-

recursive “languages”, but only humans have

learned recursive languages.

4

Running out of Ideas

“Its all been said before.”

Eventually true for a non-recursive language.

Never true for a recursive language.

There is always something original left to say!

5

Language Elements
When learning a foreign language, which
elements are hardest to learn?

• Primitives: lots of them, and hard to learn real meaning

• Means of Combination

– Complex, but, all natural languages have similar ones [Chomsky]

SOV (45% of all languages) Sentence ::= Subject Object Verb (Korean)

SVO (42%) Sentence ::= Subject Verb Object (English)

VSO (9%) Sentence ::= Verb Subject Object (Welsh)

“Lladdodd y ddraig y dyn.” (Killed the dragon the man.)

OSV (<1%): Tobati (New Guinea)

Scheme:

• Means of Abstraction: few of these, but tricky to learn differences across
languages

English: I, we

Tok Pisin (Papua New Guinea): mi (I), mitupela (he/she and I), mitripela (both
of them and I), mipela (all of them and I), yumitupela (you and I), yumitripela
(both of you and I), yumipela (all of you and I)

Scheme:

Expression ::= (Verb Object)

define
6

Pages in Revised5 Report on

the Algorithmic Language

Scheme

Primitives

Means of

Combination

Means of

Abstraction

48 pages total (includes

formal specification and

examples)

Pages in Revised5 Report on

the Algorithmic Language

Scheme

Primitives

Standard Procedures

Primitive expressions

Identifiers, numerals

18

2

1

Means of

Combination

Expressions

Program structure

2

2

Means of

Abstraction

Definitions ½

48 pages total (includes

formal specification and

examples)

Pages in Revised5 Report on

the Algorithmic Language

Scheme

Pages in C++ Language

Specification (1998)

Primitives

Standard Procedures

Primitive expressions

Identifiers, numerals

18

2

1

Means of

Combination

Expressions

Program structure

2

2

Means of

Abstraction

Definitions ½

48 pages total (includes

formal specification and

examples)

Pages in Revised5 Report on

the Algorithmic Language

Scheme

Pages in C++ Language

Specification (1998)

Primitives

Standard Procedures

Primitive expressions

Identifiers, numerals

18

2

1

Standard Procedures

Primitive expressions

Identifiers, numerals

356

30

10

Means of

Combination

Expressions

Program structure

2

2

Expressions, Statements

Program Structure

197

35

Means of

Abstraction

Definitions ½ Declarations, Classes 173

48 pages total (includes

formal specification and

examples)

776 pages total (includes no

formal specification or examples)

C++ Core language issues list has 948 items!

Pages in Revised5 Report on

the Algorithmic Language

Scheme English

Primitives

Standard Procedures

Primitive expressions

Identifiers, numerals

18

2

1

Morphemes

Words in Oxford

English Dictionary

?

500,000

Means of

Combination

Expressions

Program structure

2

2

Grammar Rules

English Grammar for

Dummies Book

100s (?)

384 pages

Means of

Abstraction

Definitions ½ Pronouns ~20

48 pages total (includes

formal specification and

examples)

Rules of

Evaluation

Scheme Grammar
Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression

| ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false

| PrimitiveProcedure

NameExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

IfExpression ::= (if ExpressionPred ExpressionConsequent ExpressionAlt)

13

Assigning Meanings
Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression | ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false| PrimitiveProcedure

NameExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

IfExpression ::= (if ExpressionPred ExpressionConsequent ExpressionAlt)

14

This grammar generates (nearly) all surface forms in the Scheme language.

What do we need to do to know the meaning of every Scheme program?

Definitions

A definition associates the value of its

expression with the name.

15

Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

(define two 2)
After this definition, the value associated with the name two is 2.

Expressions and Values
• (Almost) every expression has a value

– Have you seen any expressions that don’t have
values?

• When an expression with a value is evaluated,
its value is produced

16

Our goal is to define a meaning function, Eval, that

defines the value of every Scheme expression:

Eval(Expression) ⇒ Value

Today we do this informally with rules in English.

Primitive Expressions
PrimitiveExpression ::= Number | true | false | PrimitiveProcedure

17

Evaluation Rule 1: Primitives

If the expression is a primitive, it
evaluates to its pre-defined value.

> 2

2

> true

#t

> +

#<primitive:+>

Primitives are the

smallest units of

meaning: they can’t be

broken down further,

you need to know

what they mean.

18

Name Expressions

Expression ::= NameExpression

NameExpression ::= Name

19

Evaluation Rule 2: Names

A name evaluates to the value associated

with that name.

> (define two 2)

> two

2

20

Caveat: this simple rule only works if the value

associated with a name never changes (until PS5).

Application Expressions

Expression ::= Application Expression

ApplicationExpression

::= (Expression MoreExpressions)

MoreExpressions ::= ε

MoreExpressions ::= Expression MoreExpressions

21

Evaluation Rule 3: Application

3. To evaluation an application expression:

a) Evaluate all the subexpressions (in any order)

b) Apply the value of the first subexpression to the

values of all the other subexpressions.

(Expression0 Expression1 Expression2 …)

Rules for Application

1. Primitives. If the procedure to apply is a

primitive procedure, just do it.

2. Constructed Procedures. If the procedure is

a constructed procedure, evaluate the body

of the procedure with each parameter name

bound to the corresponding input

expression value.

23

EvalEval

ApplyApply

Eval and Apply

are defined in

terms of each

other.

Without Eval,

there would be

no Apply,

without Apply

there would be

no Eval!

24

Survey Responses: Majors

28 Cognitive Science

20 Computer Science

7 Psychology

4 Math

3 Economics

3 Commerce/Pre-Commerce

3 Undeclared

2 Physics

1 Environmental Sciences, English, Music

25

Survey Responses: PS Partners

26

No, 30

Yes, 29

Missing, 4

For PS2 everyone will be assigned a partner.

For other problem sets, you’ll have different options.

Survey Responses: Office Hours

• Scheduling office hours: (Set Cover Problem)

– Input: a set of sets of available times

– Output: the minimum size set that includes at

least one element from each of the input sets

• My office hours will be:

– Mondays, 1:30-2:30pm [Olsson 236A]

– Tuesdays, 10:30-11:30am [Wilsdorf Cafe]

27

Not a set cover: Everyone who selected at least three possible times can make at

least one of these. If you can’t make office hours, email to arrange an appointment.

Later in the course, we’ll see that this problem is equivalent to

the problem of computing an optimal photomosaic!

Honor Pledge

28

Finishing Scheme Meanings

Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression | ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false| PrimitiveProcedure

NameExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

IfExpression ::= (if ExpressionPred ExpressionConsequent ExpressionAlt)

29

Making Procedures

lambda means “make a procedure”

Expression ::= ProcedureExpression

ProcedureExpression ::=

(lambda (Parameters) Expression)

Parameters ::= ε

Parameters ::= Name Parameters

30

Evaluation Rule 4: Lambda

A lambda expression evaluates to a

procedure that takes the given

parameters and has the expression as

its body.

31

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

Lambda Example: Tautology Function

(lambda
()
true)

> ((lambda () true) 1120)
#<procedure>: expects no arguments, given 1: 1120

> ((lambda () true))
#t
> ((lambda (x) x) 1120)
1120

make a procedure

with no parameters

with body true

32

Next class we’ll follow the evaluation rules

through more interesting examples.

Evaluation Rule 5: If
IfExpression

::= (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

To evaluate an if expression:

(a) Evaluate ExpressionPredicate.

(b) If it evaluates to a false value, the value of the if
expression is the value of ExpressionAlternate;
otherwise, the value of the if expression is the
value of ExpressionConsequent.

33

Completeness of Evaluation Rules

34

Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression | ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false| PrimitiveProcedure

NameExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

IfExpression ::= (if ExpressionPred ExpressionConsequent ExpressionAlt)

Since we have an evaluation rule for each
grammar rule, we can determine the
meaning of any Scheme program!

Now You Can Write Any Program!

• You know enough now to define a procedure
that performs every possible computation!
– We’ll prove this later in the course

• We’ll learn some more useful Scheme forms:
– There are a few more special forms (like if)

– But, none of these are necessary…just helpful

• We have not defined the evaluation rules
precisely enough to unambiguously
understand all programs (e.g., what does
“value associated with a name” mean?)

35

Charge

• PS1 Due at beginning of class Wednesday

• Read Chapter 4 by Friday

• Now you know enough to produce every

computation, the rest is just gravy:

– More efficient, elegant ways to express

computations

– Ways to analyze the computations

36

