
Class 30:

Language

Construction

cs1120 Fall 2009

David Evans

Menu

• Completing the Charme Interpreter

• History of Object-Oriented Programming

Checking Grades

Plans for Exam 2

Software Voting

Univac predicts big win for Eisenhower (1952)

“We do have people complain and say they don’t

get it, I completely understand what they’re

saying, but it's not something I can control.”

– Sheri Iachetta, Charlottesville general registrar

Recap

To build an evaluator we need to:

• Figure out how to represent data
in programs

Last class: program text,
Environment

Today: Procedures, primitives

• Implement the evaluation rules
For each evaluation rule, define a

procedure that follows the
behavior of that rule.

Friday: application

Last class: definitions, names

Today: special forms, primitives

def meval(expr, env):

if isPrimitive(expr):

return evalPrimitive(expr)

elif isIf(expr):

return evalIf(expr, env)

elif isDefinition(expr):

evalDefinition(expr, env)

elif isName(expr):

return evalName(expr, env)

elif isLambda(expr):

return evalLambda(expr, env)

elif isApplication(expr):

return evalApplication(expr, env)

else:

error ('Unknown expression ...)

How should we represent procedures?

(lambda (x) (+ x x))

Representing Procedures

Environment

pointer

x
(+ x x)Input parameters

(in mouth)

Procedure Body

class Procedure:

def __init__(self, params, body, env):

self._params = params

self._body = body

self._env = env

def getParams(self):

return self._params

def getBody(self):

return self._body

def getEnvironment(self):

return self._env

def __str__(self):

return '<Procedure %s / %s>' % (str(self._params), str(self._body))

Procedure Class

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)): ...

elif isinstance(proc, Procedure):

params = proc.getParams()

newenv = Environment(proc.getEnvironment())

for i in range(0, len(params)):

newenv.addVariable(params[i], operands[i])

return meval(proc.getBody(), newenv)

Evaluating Lambda Expressions

def isSpecialForm(expr, keyword):

return isinstance(expr, list) and len(expr) > 0 and expr[0] == keyword

def isLambda(expr):

return isSpecialForm(expr, 'lambda')

def evalLambda(expr,env):

assert isLambda(expr)

if len(expr) != 3:

evalError ("Bad lambda expression: %s" % str(expr))

return Procedure(expr[1], expr[2], env)

parse("(lambda (a) (+ a 1))")[0]

['lambda', ['a'], ['+', 'a', '1']]

Recap

def meval(expr, env):

if isPrimitive(expr):

return evalPrimitive(expr)

elif isIf(expr):

return evalIf(expr, env)

elif isDefinition(expr):

evalDefinition(expr, env)

elif isName(expr):

return evalName(expr, env)

elif isLambda(expr):

return evalLambda(expr, env)

elif isApplication(expr):

return evalApplication(expr, env)

else:

error ('Unknown expression ...)

Making Primitives

Evaluation Rule 1: Primitives

A primitive evaluates to its
pre-defined value.

To implement a primitive, we need to give it its pre-defined value!

Primitives
def isPrimitive(expr):

return (isNumber(expr) or isPrimitiveProcedure(expr))

def isNumber(expr):

return isinstance(expr, str) and expr.isdigit()

def isPrimitiveProcedure(expr):

return callable(expr)

def evalPrimitive(expr):

if isNumber(expr):

return int(expr)

else:

return expr

Making Primitive Procedures

def primitivePlus (operands):

if (len(operands) == 0):

return 0

else:

return operands[0] + primitivePlus (operands[1:])

def primitiveEquals (operands):

checkOperands (operands, 2, '=')

return operands[0] == operands[1]

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)):

return proc(operands)

elif isinstance(proc, Procedure):

...

To apply a

primitive

procedure,

“just do it”.

So, what do we do with the primitives?

def initializeGlobalEnvironment():

global globalEnvironment

globalEnvironment = Environment(None)

globalEnvironment.addVariable('true', True)

globalEnvironment.addVariable('false', False)

globalEnvironment.addVariable('+', primitivePlus)

globalEnvironment.addVariable('-', primitiveMinus)

globalEnvironment.addVariable('*', primitiveTimes)

globalEnvironment.addVariable('=', primitiveEquals)

globalEnvironment.addVariable('zero?', primitiveZero)

globalEnvironment.addVariable('>', primitiveGreater)

globalEnvironment.addVariable('<', primitiveLessThan)

Evaluation Rule 5: If
IfExpression

::= (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

To evaluate an if expression:

(a) Evaluate ExpressionPredicate.

(b) If it evaluates to a false value, the value of the if
expression is the value of ExpressionAlternate;
otherwise, the value of the if expression is the
value of ExpressionConsequent.

14

Making Special Forms

def isIf(expr):

return isSpecialForm(expr, 'if')

def evalIf(expr,env):

assert isIf(expr)

if len(expr) != 4:

evalError ('Bad if expression: %s' % str(expr))

if meval(expr[1], env) != False:

return meval(expr[2],env)

else:

return meval(expr[3],env)

All Done!

def meval(expr, env):

if isPrimitive(expr):

return evalPrimitive(expr)

elif isIf(expr):

return evalIf(expr, env)

elif isDefinition(expr):

evalDefinition(expr, env)

elif isName(expr):

return evalName(expr, env)

elif isLambda(expr):

return evalLambda(expr, env)

elif isApplication(expr):

return evalApplication(expr, env)

else:

error ('Unknown expression ...)

This is a universal

programming

language – we can

define every

procedure in Charme.

History of

Object-Oriented

Programming

Object-oriented programming is an exceptionally bad idea

which could only have originated in California.

Edsger Dijkstra

Sketchpad
Ivan Sutherland’s 1963 PhD thesis

(supervised by Claude Shannon)

Interactive drawing program

Light pen

Components in

Sketchpad

Objects in Sketchpad

In the process of making the Sketchpad system operate, a few very general

functions were developed which make no reference at all to the specific types

of entities on which they operate. These general functions give the Sketchpad

system the ability to operate on a wide range of problems. The motivation for

making the functions as general as possible came from the desire to get as much

result as possible from the programming effort involved. For example, the general

function for expanding instances makes it possible for Sketchpad to handle any

fixed geometry subpicture. The rewards that come from implementing general

functions are so great that the author has become reluctant to write any

programs for specific jobs. Each of the general functions implemented in the

Sketchpad system abstracts, in some sense, some common property of pictures

independent of the specific subject matter of the pictures themselves.

Ivan Sutherland,

Sketchpad: a Man-Machine Graphical Communication System, 1963

Simula
• Considered the first

“object-oriented”
programming language

• Language designed for
simulation by Kristen
Nygaard and Ole-Johan
Dahl (Norway, 1962)

• Had special syntax for
defining classes that
packages state and
procedures together

Counter in Simula

class counter;

integer count;

begin

procedure reset(); count := 0; end;

procedure next();

count := count + 1; end;

integer procedure current();

current := count; end;

end
Does this have everything we need for

“object-oriented programming”?

Object-Oriented Programming

• Object-Oriented Programming is a state of

mind where you program by thinking about

objects

• It is difficult to reach that state of mind if your
language doesn’t have mechanisms for
packaging state and procedures (Python has
class, Scheme has lambda expressions)

• Other things can help: dynamic dispatch,
inheritance, automatic memory management,
mixins, good donuts, etc.

XEROX Palo Alto Research Center (PARC)

1970s:

• Bitmapped display

• Graphical User Interface
– Steve Jobs paid $1M to visit and

PARC, and returned to make
Apple Lisa/Mac

• Ethernet

• First personal computer (Alto)

• PostScript Printers

• Object-Oriented Programming

Dynabook, 1972

(Just a model)

“Don’t worry about what anybody else is

going to do… The best way to predict the

future is to invent it. Really smart people

with reasonable funding can do just

about anything that doesn't violate too

many of Newton's Laws!”

— Alan Kay, 1971

Dynabook 1972

• Tablet computer intended as tool for learning

• Alan Kay wanted children to program it also

• Hallway argument, Kay claims you could

define “the most powerful language in the

world in a page of code”

Proof: Smalltalk

Scheme is as powerful, but takes two pages

Before the end of the course, we will see an

equally powerful language that fits in ¼ page

BYTE

Magazine,

August 1981

Smalltalk

• Everything is an object

• Objects communicate by sending and

receiving messages

• Objects have their own state (which may

contain other objects)

• How do you do 3 + 4?

send the object 3 the message “+ 4”

Counter in Smalltalk

class name counter

instance variable names count

new count <- 0

next count <- count + 1

current ^ count

So, who really

was the first

object-oriented

programmer?

Object-oriented

programming is an

exceptionally bad idea

which could only have

originated in California.

Edsger Dijkstra

Ada, Countess of Lovelace,

around 1843

By the word operation, we mean any process
which alters the mutual relation of two or more
things, be this relation of what kind it may. This
is the most general definition, and would
include all subjects in the universe. Again, it
might act upon other things besides number,
were objects found whose mutual fundamental
relations could be expressed by those of the
abstract science of operations... Supposing, for
instance, that the fundamental relations of
pitched sounds in the science of harmony and
of musical composition were susceptible of such
expression and adaptations, the engine might
compose elaborate and scientific pieces of
music of any degree of complexity or extent.

Charge

• Friday: changing the language rules

• PS7 due Monday

Remember to vote (early and often!) in the

Exam 2 poll before 5pm Thursday.

