
Lecture Lecture 31: 31:

LazinessLaziness

University of Virginia cs1120 Fall 2009

David Evans

Today’s Class

• We can change the meaning of the language by

changing the evaluation rules in our interpreter.

• Changing the language enables new ways of

programming!

• Lazy evaluation changes the application rule to

delay evaluating operand expressions

– This eliminates the need for most special forms (all

except lambda) and enables programming with

“infinite lists”

Project details are now on the website. Team

requests and project ideas are due next Thursday.

Exam 2 Poll

0

2

4

6

8

10

12

14

16

Prefered

Least

Nov 25 is actually a holiday! So...
Exam 2 will be out

Wed Nov 18, due Mon Nov 23

Eager Evaluation

To apply a constructed procedure:

1. Construct a new environment, whose parent is the

environment of the applied procedure.

2. For each procedure parameter, create a place in the frame

of the new environment with the name of the parameter.

Evaluate each operand expression in the environment of

the application and initialize the value in each place to the

value of the corresponding operand expression.

3. Evaluate the body of the procedure in the newly created

environment. The resulting value is the value of the

application.

Our standard evaluation rule for applications is eager: we always

evaluate all the operand expressions whether we need them or not.

Let’s procrastinate... Lazy Evaluation

• Don’t evaluate expressions until their value is

really needed

– We might save work this way, since sometimes we

don’t need the value of an expression

– We might change the meaning of some

expressions, since the order of evaluation matters

Note: not a wise policy for problem sets

(all answer values will always be needed!)

Lazy Examples
Charme> ((lambda (x) 3) (* 2 2))

3

LazyCharme> ((lambda (x) 3) (* 2 2))

3

Charme>((lambda (x) 3) (car 3))

error: car expects a pair, applied to 3

LazyCharme> ((lambda (x) 3) (car 3))

3

Charme> ((lambda (x) 3) (loop-forever))

no value – loops forever
LazyCharme> ((lambda (x) 3) (loop-forever))

3

Laziness can be useful!

(Assumes extensions

from ps7)

How do we make our

evaluation rules lazier?

To apply a constructed procedure:

1. Construct a new environment, whose parent is the

environment of the applied procedure.

2. For each procedure parameter, create a place in the frame

of the new environment with the name of the parameter.

Evaluate each operand expression in the environment of the

application and initialize the value in each place to the value

of the corresponding operand expression.

3. Evaluate the body of the procedure in the newly created

environment. The resulting value is the value of the

application.

Put something (a “thunk”) in that place that can be used

later to get the value of that operand when it is needed.

Evaluation of Arguments

• Applicative Order (“eager evaluation”)

– Evaluate all subexpressions before applying

– Scheme, original Charme, Java

• Normal Order (“lazy evaluation”)

– Evaluate arguments when the value is needed

– Algol60 (sort of), Haskell, Miranda, LazyCharme

“Normal” Scheme order is not “Normal Order”!

What do we need to delay evaluation?

• Need to record everything we will need to
evaluate the expression later: the expression
to evaluate and the environment

• After evaluating the expression, record the
result for reuse: only evaluate operand
expression once, even if it is used many times

Put something (a “thunk”) in that place that can be used

later to get the value of that operand when it is needed.

I Thunk I Can

class Thunk:

def __init__(self, expr, env):

self._expr = expr

self._env = env

self._evaluated = False

def value(self):

if not self._evaluated:

self._value = forceEval(self._expr, self._env)

self._evaluated = True

return self._value

Lazy Application

def evalApplication(expr, env):

make Thunk object for each operand expression

ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])

return mapply(forceEval(expr[0], env), ops)

def evalApplication(expr, env):

subexprvals = map (lambda sexpr: meval(sexpr, env), expr)

return mapply(subexprvals[0], subexprvals[1:])

Forcing Evaluation
class Thunk:

def __init__(self, expr, env):

self._expr = expr

self._env = env

self._evaluated = False

def value(self):

if not self._evaluated:

self._value = forceEval(self._expr, self._env)

self._evaluated = True

return self._value def forceEval(expr, env):

value = meval(expr, env)

if isinstance(value, Thunk):

return value.value()

else:

return value

What else needs to change?

Hint: where do we need real values, instead of Thunks?

Primitive Procedures

Option 1: redefine all primitives to work on

thunks

Option 2: assume primitives need values of all

their operands and evaluate them eagerly

Primitive Procedures
def deThunk(expr):

if isThunk(expr):

return expr.value()

else:

return expr

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)):

operands = map (lambda op: deThunk(op), operands)

return proc(operands)

elif ...

We need the deThunk procedure because Python’s

lambda construct can only have an expression as its

body (not an if statement)

If Expressions

We need to know the actual value of the predicate

expression, to know how to evaluate the if expression.

def evalIf(expr,env):

if meval(expr[1], env) != False:

return meval(expr[2],env)

else:

return meval(expr[3],env)

def evalIf(expr,env):

if forceEval(expr[1], env) != False:

return meval(expr[2],env)

else:

return meval(expr[3],env)

Do we really need if special form?

• Eager evaluation: yes

– If we tried to define if as a procedure, all its

operand expressions are always evaluated

• Lazy evaluation: no!

– We can define if just like a regular procedure

(define true (lambda (a b) a))

(define false (lambda (a b) b))

(define ifp (lambda p c a) (p c a))

Lazy Data Structures

(define cons

(lambda (a b)

(lambda (p)

(if p a b))))

(define car

(lambda (p) (p #t)))

(define cdr

(lambda (p) (p #f)))

Note: for PS7, you

define these as primitives,

which do not evaluate lazily.

Using Lazy Pairs

(define cons

(lambda (a b)

(lambda (p)

(if p a b))))

LazyCharme> (define pair (cons 3 bogus))

LazyCharme> pair

<Procedure ['p'] / ['if', 'p', 'a', 'b']>

LazyCharme> (car pair)

3

LazyCharme> (cdr pair)

Error: Undefined name: bogus

(define car

(lambda (p) (p #t)))

(define cdr

(lambda (p) (p #f)))

Infinite Lists

(define ints-from

(lambda (n)

(cons n (ints-from (+ n 1)))))

LazyCharme> (define allnaturals (ints-from 0))

LazyCharme> (car allnaturals)

0

LazyCharme> (car (cdr allnaturals))

1

LazyCharme> (car (cdr (cdr (cdr (cdr allnaturals)))))

4

Charge

• Don’t let LazyCharme

happen to you!

– PS7 is due Monday

– Project: don’t delay forming

teams and getting started on

your project

• Monday: guest lecture by

Kinga Dobolyi on Web

Applications

Ordinary men and women, having the

opportunity of a happy life, will become more

kindly and less persecuting and less inclined to

view others with suspicion. The taste for war will

die out, partly for this reason, and partly because

it will involve long and severe work for all. Good

nature is, of all moral qualities, the one that the

world needs most, and good nature is the result

of ease and security, not of a life of arduous

struggle. Modern methods of production have

given us the possibility of ease and security for

all; we have chosen, instead, to have overwork

for some and starvation for others. Hitherto we

have continued to be as energetic as we were

before there were machines; in this we have

been foolish, but there is no reason to go on

being foolish forever.

Bertrand Russell, In Praise of Idleness, 1932

