
David Evans

University of Virginia cs1120 Fall 2009
http://www.cs.virginia.edu/cs1120

Lecture Lecture 38: 38:

Modeling Modeling

ComputingComputing

Menu

• Noncomputability of Malware Detection

• Modeling Computing

– Turing’s Model

– Universal Machines

Remember to send me your requested site

name by midnight tonight if you want your site

hosted at name.cs.virginia.edu.

Exam 2 and Final

Is-Malware Problem

Input: A string, s, representing a program.

Output: If s is malware, True; otherwise,

False.

Is “Is-Malware” computable?

From Paul Graham’s “Undergraduation”:

My friend Robert learned a lot by writing network software when he

was an undergrad. One of his projects was to connect Harvard to the

Arpanet; it had been one of the original nodes, but by 1984 the

connection had died. Not only was this work not for a class, but

because he spent all his time on it and neglected his studies, he was

kicked out of school for a year.

... When Robert got kicked out of grad school for writing the Internet

worm of 1988, I envied him enormously for finding a way out without

the stigma of failure.

... It all evened out in the end, and now he’s a professor at MIT. But

you’ll probably be happier if you don’t go to that extreme; it caused

him a lot of worry at the time.

3 years of probation, 400 hours of community service, $10,000+ fine

Morris Internet Worm (1988)
p = fingerd

– Program used to query user status

– Worm also attacked other programs

i = "nop400 pushl $68732f pushl $6e69622f movl sp,r10 pushl $0

pushl $0 pushl r10 pushl $3 movl sp,ap chmk $3b"

is_malware("p(i)") should evaluate to True

Worm infected several thousand computers (~10% of Internet in 1988)

Uncomputability Proof

Suppose we could define is_malware. Then

we could define halts:

def halts(s):

return is_malware (remove_evil(s) +

''''''

do_evil()

'''''')

Can we make

remove_evil?
Yes, just replace

all externally visible

actions (e.g., file writes)

in s with shadow actions.

Thus, is_malware is noncomputable.

Can Anti-Virus programs exist?

“The Art of Computer Virus

Research and Defense”

Peter Szor, Symantec

“Solving” Noncomputable Problems

• Since the problem is noncomputable, there is
no procedure that (1) always gives the correct
answer, and (2) always finishes.

• Must give up one of these to “solve”
undecidable problems

– Giving up #2 is not acceptable in most cases

– Must give up #1

• Or change the problem: e.g., detect file
infections during an execution

Actual is_malware Programs

• Sometimes give the wrong answer

– “False positive”: say P is a virus when it isn’t

– “False negative”: say P is safe when it is

• Database of known viruses: if P matches one
of these, it is a virus

• Clever virus authors can make viruses that
change each time they propagate

– Emulate program for a limited number of steps; if
it doesn’t do anything bad, assume it is safe

How convincing is our

Halting Problem proof?

This “proof” assumes Python exists and is means exactly what it

should! Python is too complex to believe this: we need a

simpler and more precise model of computation.

def paradox():

if halts('paradox()'):

while True:

pass

1. paradox leads to a

contradiction.

2. If we have halts, an

algorithm that solves the

Halting Problem, we can

define paradox.

3. Therefore, halts does not

exist.

Should Python implementation

convince us that Python exists?
def make_huge(n):

if n == 0: return [0]

return make_huge(n-1) + make_huge(n-1)

>>> len(make_huge(10))

1024

>>> len(make_huge(100))

File "C:/Users/David Evans/cs1120/huge.py", line 3, in make_huge

return make_huge(n-1) + make_huge(n-1)

File "C:/Users/David Evans/cs1120/huge.py", line 3, in make_huge

return make_huge(n-1) + make_huge(n-1)

...

File "C:/Users/David Evans/cs1120/huge.py", line 3, in make_huge

return make_huge(n-1) + make_huge(n-1)

MemoryError

No real interpreter can correctly implement the full semantics of Python!

Solutions

• Option 1: Prove “Python” does exist

– Show that some ideal interpreter could implement

all the evaluation rules (but what is interpreting

that ideal interpreter?)

• Option 2: Find a simpler computing model

– Define it precisely

– Show that the Halting paradox procedure can be

defined in this model

Note: our running time analyses also all depend on our computing model!

What makes a

good model?

Copernicus

F = GM
1
M

2
/ R2

Newton Ptolomy

How should we model a Computer?

Apollo Guidance

Computer (1969)

Colossus (1944)

Cray-1 (1976)

Palm Pre (2009)

Flickr: louisvolantApple II (1977)

Honeywell Kitchen Computer (1969)

Turing invented the

model we’ll use today

in 1936. What

“computer” was he

modeling?

“Computers” before WWII Mechanical Computing

Modeling Computers

• Input

– Without it, we can’t describe a problem

• Output

– Without it, we can’t get an answer

• Processing

– Need some way of getting from the input to the
output

• Memory

– Need to keep track of what we are doing

Modeling Input

Engelbart’s mouse and keypad

Punch Cards

Altair BASIC Paper Tape, 1976

Turing’s Model

“Computing is normally done
by writing certain symbols on
paper. We may suppose this
paper is divided into squares
like a child’s arithmetic book.”

Alan Turing, On computable
numbers, with an application to
the Entscheidungsproblem, 1936

Modeling Pencil and Paper

C S S A 7 2 3

How long should the tape be?

... ...

Infinitely long! We are modeling a computer, not

building one. Our model should not have silly practical

limitations (like a real computer does).

Modeling Output

• Blinking lights are

cool, but hard to

model

• Use the tape:

output is what is

written on the tape

at the end

Connection Machine CM-5, 1993

Modeling Processing (Brains)

Look at the

current state of

the computation

Follow simple

rules about what

to do next

Modeling Processing

• Evaluation Rules

– Given an input on our tape, how do we evaluate

to produce the output

• What do we need:

– Read what is on the tape at the current square

– Move the tape one square in either direction

– Write into the current square

0 0 1 1 0 0 1 0 0 0

Is that enough to model a computer?

Modeling Processing

• Read, write and move is not enough

• We also need to keep track of what we are

doing:

– How do we know whether to read, write or move

at each step?

– How do we know when we’re done?

• What do we need for this?

Finite State Machines

1Start 2

HALT

1
0

1
#

0

Hmmm…maybe we don’t need those

infinite tapes after all?

1Start 2

HALT

(not a

paren

)
#

not a

paren

)

ERROR

What if the

next input symbol

is (in state 2?

How many states do we need?

1Start 2

HALT

(not a

paren

)
#

not a

paren

)

ERROR

3

not a

paren
(

)

4
(

)

not a paren

(

Finite State Machine

• There are lots of things we can’t compute

with only a finite number of states

• Solutions:

– “Infinite” State Machine

• Hard to define, draw, and reason about

– Add an infinite tape to the Finite State

Machine

Modeling Processing (Brains)

Follow simple rules

Remember what you are doing

“For the present I shall

only say that the

justification lies in the fact

that the human memory is

necessarily limited.”

Alan Turing

FSM + Infinite Tape

• Start:

– FSM in Start State

– Input on Infinite Tape

– Pointer to start of input

• Step:

– Read one input symbol from tape

– Write symbol on tape, and move L or R one square

– Follow transition rule from current state

• Finish:

– Transition to halt state

Turing’s Model: Turing Machine

1

Start

2

Input: #
Write: #

Move: ←

1 0 1 1 0 1 1... ...1 0 1 1 0 1 1 1

Input: 1
Write: 0

Move: ←

Input: 1
Write: 1

Move: →

Input: 0
Write: 0

Move: → 3

Input: 0
Write: #

Move: Halt

Infinite Tape: Finite set of symbols, one in each square

Can read/write one square each step

Controller:

Limited (finite)

number of states

Follow rules based

on current state

and read symbol

Write one square

each step, move

left or right or halt,

change state

Charge

• If you want us to host your site, remember to

send me your site name before midnight

tonight!

• Wednesday:

– Busy Beavers

– Alternate Computing Models

