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Menu

• Recap Turing Machine from last class

• Halting Problem for Turing Machines:

– Proof that the Halting Problem for TMs is 
noncomputable

– Universal Turing Machines: one TM that can simulate 
every other TM

• Church-Turing Thesis: all reasonable computing 
models are equivalent!

• Lambda Calculus: an alternate computing model, 
equivalent to Turing Machine

Recap: Turing’s Model
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Infinite Tape: Finite set of symbols, one in each square

Can read/write one square each step

Controller:

Limited (finite) 

number of states

Follow rules based 

on current state 

and read symbol

Write one square 

each step, move 

left or right or halt, 

change state

Turing Machine State
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TuringMachine ::= < Alphabet, Tape, FSM >

Alphabet ::= { Symbol* }

Tape ::= < LeftSide, Current, RightSide >

OneSquare ::= Symbol | #

Current ::= OneSquare

LeftSide ::= [ Square* ]

RightSide ::= [ Square* ]

Everything to left of LeftSide is #.

Everything to right of RightSide is #.
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Finite State Machine

Although we typically draw TMs as pictures, we could write them down as

strings in this language (which could be converted to whole numbers)

Infinite Tape

Enumerating Turing Machines

• Now that we’ve decided how to describe 

Turing Machines, we can number them

• TM-5023582376 = balancing parens

• TM-57239683 = even number of 1s

• TM-3523796834721038296738259873 = Universal TM

• TM-3672349872381692309875823987609823712347823 = WindowsXP
Not the real numbers 

– they would be 

much much much 

much much bigger!

Halting Problem

Pythonic Halting Problem TM Halting Problem

Input: a string describing a 

Turing Machine, M

Output: if M would eventually 

Halt, output True; 

otherwise, output False.

Input: a string describing a 

Python program, P

Output: if evaluating P would 

eventually finish, output 

True; otherwise, output 

False.



Halting Problem “Proof”

def paradox():

if halts('paradox()'):

while True: 

pass

Pythonic Halting Problem TM Halting Problem

HALTS(M) = TM that solves TM Halting 

Problem: input tape describes TM M, 

output tape:  #1 if M halts, otherwise #0

PARADOX = TM that:

1. simulates HALTS(PARADOX)

2. Then, if tape is #1, loop forever; 

if tape is #0, HALT

simulates? This proof assumes we can design a TM that simulates any other TM!

An Any TM Simulator

Input: < Description of some TM M, w >

Output: result of running M on w

Universal

Turing

Machine

M

w

Output 

Tape

for running

TM-M

starting on  

tape w

Manchester Illuminated Universal Turing Machine, #9 

from http://www.verostko.com/manchester/manchester.html

Universal Computing Machine
2-state, 3-symbol Turing machine proved 

universal by Alex Smith in 2007

Alex Smith, 

University of Birmingham

What This Means

• If you can:
– Keep track of a finite state

– Follow transition rules

– Read and write to memory 

you can simulate a universal Turing machine.

• A Turing machine can simulate the world’s most 
powerful supercomputer
– Thus, your cell phone can simulate the world’s most 

powerful supercomputer (it’ll just take a lot longer and will 
run out of memory)

• No computer that can be simulated by a TM can solve 
the Halting Problem

Church-Turing Thesis

• All mechanical computers are 
equally powerful (except for 
practical limits like memory size, 
time, display, energy, etc.)

• There exists some Turing 
machine that can simulate any
mechanical computer

• Any computer that is powerful 
enough to simulate a Turing 
machine, can simulate any 
mechanical computer

Alonzo Church, 1903-1995

Alan Turing, 1912-1954



Church’s Computing Model:

Lambda Calculus

• Developed in 1930s in attempt to formalize 

mathematics (similar to Bertrand Russell’s 

goals)

• Became model of computing

• Basis of LISP and Scheme

What is Calculus?

d/dx xn = nxn-1 [Power Rule]

d/dx (f + g) = d/dx f + d/dx g [Sum Rule]

Calculus is a branch of mathematics that 

deals with limits and the differentiation 

and integration of functions of one or 

more variables...

Real Definition

• A calculus is just a bunch of rules for 

manipulating symbols.

• People can give meaning to those symbols, 

but that’s not part of the calculus.

• Differential calculus is a bunch of rules for 

manipulating symbols.  There is an 

interpretation of those symbols corresponds 

with physics, slopes, etc.

Lambda Calculus

• Rules for manipulating strings of symbols

term =   variable 

| term term

| (term)

| λλλλ variable . term

• One main rule: β-reduction

((λx. M)N) ⇒ β M 

with all x’s in M replaced by N

This is a lot like Scheme, without primitives, special forms, mutation!

Note: I have slightly altered 

the traditional syntax to 

make it more like Scheme.

Lambda Calculus

• Developed in 1930s in attempt to formalize 
mathematics (similar to Bertrand Russell’s goals)

• Original attempt was inconsistent!
– Kleene-Rosser Paradox: 

k = λx .¬¬¬¬(x x)

(k k) = λx .¬¬¬¬(x x)k = ¬¬¬¬(k k)

• Church’s solution: model computation not logic
(k k) is a nonterminating recursive definition, not a 
contradiction!

(k k) ⇒ ¬(k k) ⇒ ¬¬(k k) ⇒ ¬¬¬ (k k) ⇒ ...

Evaluating Lambda Expressions

• redex:  Term of the form ((λx. M)N)

Something that can be β-reduced

• An expression is in normal form if it contains 

no redexes.

• To evaluate a lambda expression, keep doing 

reductions until you get to normal form.



Some Simple Functions

I ≡ λx.x

C ≡ λx.(λy. yx) 

((C I) I) = (((λx.(λy. yx)) (λx.x)) (λx.x))

→β ((λy. y (λx.x)) (λx.x))

→β (λx.x (λx.x))

→β λx.x

≡ I

Power of Lambda Calculus

• Is Lambda Calculus a universal language?

– Can we compute any computable algorithm using 
Lambda Calculus?

• Option 1: Prove it is not

– Find some Turing Machine that cannot be 
simulated with Lambda Calculus

• Option 2: Prove it is:

– Show you can simulate every Turing Machine 
using Lambda Calculus

Since a Universal Turing Machine can simulate every other TM, it is enough to 

show we can simulate a Universal Turing Machine using Lambda Calculus

Simulating a Turing Machine
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Finite State Machine

Read/Write Infinite Tape

Lists

Finite State Machine

Numbers

Processing

Way to make decisions (if)

Way to keep going

Continued on Friday...


