
Class 40: Alternate

Computing Models

cs1120 Fall 2009

University of Virginia

David Evans

Reminders
• To qualify for a presentation your team must send me

an email containing the URL of your site (with some
working basic functionality) before 4:59pm Sunday

– Presentation time will be divided between qualifying
teams

– Teams will present in reverse order of qualification time

– Non-presenting teams only turn in reports instead (before
midnight Monday)

• Final will be posted Monday, and due Friday (Dec 11)

– If this scheduling causes you undue hardship, it may be
possible to get an extension to Monday (Dec 14)

I will have extended extra office hours (either in my office or Small Hall) on Sunday

afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)

Equivalent Model Computers?

z z zz z z z

1

Start

HALT

), X, L

2:

look

for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

...

Turing Machine

term = variable

| term term

| (term)

| λλλλ variable . term

(λx. M)N ⇒ β M

with xs replaced by N

Lambda Calculus

can simulate?

can simulate?

Simulating a Turing Machine
z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2:

look

for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape

Lists

Finite State Machine

Numbers

Processing

Way to make decisions (if)

Way to keep going

In search of the truth?

• What does true mean?

• True is something that when used as the first

operand of if, makes the value of the if the

value of its second operand:

(if T M N) → M

Don’t search for T, search for if

T ≡ λx (λy. x)

F ≡ λx (λ y. y))

if ≡ λp (λc (λa . (pc)a)

Just like in LazyScheme:

(define true (lambda (a b) a))

(define false (lambda (a b) b))

(define if (lambda (p c a) (p c a))

Simulating a Turing Machine
z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2:

look

for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape

Lists

Finite State Machine

Numbers

Processing

Way to make decisions (if)

Way to keep going

Making Lists

(define (make-pair x y)

(lambda (selector) (if selector x y)))

(define (car-of-pair p) (p true))

(define (cdr-of-pair p) (p false))

cons ≡ λx.λy.(λz.(z x y))

car ≡ λx.(x T)

cdr ≡ λx.(x F)

null ≡ λx.T

null? ≡ λx. (x (λy .λz . F))

T ≡ λx (λy. x)

Simulating a Turing Machine
z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2:

look

for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

Read/Write Infinite Tape

Lists

Finite State Machine

Numbers

Processing

Way to make decisions (if)

Way to keep going

10

What is 11?

eleven

11

elf

十一十一十一十一

одиннадцать

أحد عش

once

イレブンイレブンイレブンイレブン

onze

undici

XI

Meaning of Numbers

• “11-ness” is something who’s successor

is “12-ness”

• “11-ness” is something who’s

predecessor is “10-ness”

• “Zero” is special. It has a successor “one-

ness”, but no predecessor.

Meaning of Numbers

(pred (succ N)) → N

(succ (pred N)) → N

(succ (pred (succ N))) → (succ N)

(zero? zero) → T

(zero? (succ zero)) → F

Is this enough?

Can we define add with pred, succ, zero?

and zero?

add ≡ λx . λy.

(if (zero? x) y (add (pred x) (succ y))

Can we define lambda terms that

behave like

zero, zero?, pred and succ?

Hint: The length of the list corresponds to the number value.

Making Numbers

0 ≡ null

zero? ≡ null?

pred ≡ cdr

succ ≡ λ x . (cons F x)

pred ≡ λx. (cdr x)

42 = λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z

xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy.

y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z

xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy.

y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z

xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy.

y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z

xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy.

y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y λxy.(λz.z xy) λxy. y

λx.T

Lambda Calculus is a Universal Computer

z z z z z z z z z z z z z z z zz z z z

1

Start

HALT

), X, L

2:

look

for (

#, 1, -

¬), #, R

¬(, #, L

(, X, R

#, 0, -

Finite State Machine

• Read/Write Infinite Tape

� Mutable Lists

• Finite State Machine

� Numbers to keep track of state

• Processing

� Way of making decisions (if)

☯ Way to keep going
We have this, but we cheated

using ≡≡≡≡ to make recursive

definitions!

Having names and definitions

is much more complex than

Lambda calculus.

Way to Keep Going: The Y-Combinator

Y = λf (λx . (f (x x)) (λx . f (x x))

This finds the fixed point of any function!

(Y G) = (G (Y G))

Universal Computer

• Lambda Calculus can simulate a Turing Machine

– Everything a Turing Machine can compute, Lambda

Calculus can compute also

• Turing Machine can simulate Lambda Calculus

(we didn’t prove this)

– Everything Lambda Calculus can compute, a Turing

Machine can compute also

• Church-Turing Thesis: this is true for any other

mechanical computer also

Computability in Theory and

Practice

(Intellectual Computability

Discussion on TV Video)

http://www.funny-videos.co.uk/videoAliGScienceVideo39.html

http://video.google.com/videoplay?docid=1623254076490030585#

Ali G Problem

Input: a list of 2 numbers with up to d digits each

Output: the product of the 2 numbers

Is it computable?
Yes – a straightforward algorithm

solves it. Using elementary

multiplication techniques we know

it is in O(d2)

Can real computers solve it?

Ali G was Right!

• Theory assumes ideal computers:

– Unlimited, perfect memory

– Unlimited (but finite) time

• Real computers have:

– Limited memory, time, power outages, flaky

programming languages, etc.

– There are many computable problems we cannot

solve with real computer: the actual inputs do

matter (in practice, but not in theory!)

Things Real Computers Can Do

That Turing Machines Cannot

Generate Heat

Stop a Door

Provide an adequate

habitat for fish

Nondeterministic Turing Machine

• At each step, instead of making one choice

and following it, the machine can

simultaneously try two choices.

• If any path of choices leads to a halting state,

that machine’s state is the result of the

computation.

1

2

3

Ways to Think about Nondeterminism

Omnipotent: It can try all possible
solutions at once to find the one that is
right.

Omniscient: Whenever it has to make a
choice, it always guess right.

Can a regular TM model a nondeterministic TM?

Yes, just simulate all the possible machines.

Can a nondeterministic TM solve problems in

polynomial time (O(Nk) for some constant k)

that cannot be solved in polynomial time by a

regular TM?

Answer: Unknown! This is the most famous and

important open question in Computer Science: P = NP?

Ways to answer this:

1. Write a polynomial time pegboard puzzle

solver (or prove it can’t be done)

2. Write a polynomial time optimal photomosaic

maker (or prove it can’t be done)

3. ...

Course Summary: Three Main Themes

Recursive Definitions

Recursive procedures, recursive data structures,
languages

Universality

Procedures are just another kind of data

A universal computing machine can simulate all other
computing machines

Abstraction: giving things names and hiding details

Digital abstraction, procedural abstraction, data
abstraction, objects

Things that are likely to be on the Final

Defining Procedures
– How to define procedures to solve problems, recursive

procedures

– Functional and imperative style programming

Analyzing Procedures
– Asymptotic run-time analysis, memory use

Interpreters
– Understanding how interpreter defines meaning and running

time of a language

– Being able to change a language by modifying an interpreter

Computing Models
– Proving a problem is computable or noncomputable

– Is a computing model equivalent to a TM?

NYTimes article today that mentions my 2005 crypto final!

Charge

• Sunday (4:59pm): to qualify for a presentation,

you must have some basic functionality working

• Monday: Project Presentations

– or...Project Reports (for non-presenting teams)

– Presentation time will be divided among the

qualifying teams (if all teams qualify, less than 2

minutes!): time to explain your project and demo its

most interesting functionality

• Final Exam: will be posted Monday

I will have extended extra office hours (either in my office or Small Hall) on Sunday

afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)

