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Reminders
• To qualify for a presentation your team must send me 

an email containing the URL of your site (with some 
working basic functionality) before 4:59pm Sunday

– Presentation time will be divided between qualifying 
teams

– Teams will present in reverse order of qualification time

– Non-presenting teams only turn in reports instead (before 
midnight Monday)

• Final will be posted Monday, and due Friday (Dec 11)

– If this scheduling causes you undue hardship, it may be 
possible to get an extension to Monday (Dec 14)

I will have extended extra office hours (either in my office or Small Hall) on Sunday 

afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)

Equivalent Model Computers?
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with xs replaced by N

Lambda Calculus

can simulate?

can simulate?

Simulating a Turing Machine
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In search of the truth?

• What does true mean?

• True is something that when used as the first 

operand of if, makes the value of the if the 

value of its second operand:

(if T M N) → M

Don’t search for T, search for if

T ≡ λx (λy. x)

F ≡ λx (λ y. y))

if ≡ λp (λc (λa . (pc)a)

Just like in LazyScheme:

(define true (lambda (a b) a))

(define false (lambda (a b) b))

(define if (lambda (p c a) (p c a))



Simulating a Turing Machine
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Making Lists

(define (make-pair x y) 

(lambda (selector) (if selector x y))) 

(define (car-of-pair p) (p true)) 

(define (cdr-of-pair p) (p false)) 

cons ≡ λx.λy.(λz.(z x y))

car ≡ λx.(x T)

cdr ≡ λx.(x F)

null ≡ λx.T

null? ≡ λx. (x (λy .λz . F))

T ≡ λx (λy. x)

Simulating a Turing Machine
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Meaning of Numbers

• “11-ness” is something who’s successor

is “12-ness”

• “11-ness” is something who’s 

predecessor is “10-ness”

• “Zero” is special.  It has a successor “one-

ness”, but no predecessor.

Meaning of Numbers

(pred (succ N)) → N

(succ (pred N)) → N

(succ (pred (succ N))) → (succ N)

(zero? zero) → T

(zero? (succ zero)) → F



Is this enough?

Can we define add with pred, succ, zero? 

and zero?

add ≡ λx . λy. 

(if (zero? x) y (add (pred x) (succ y))

Can we define lambda terms that 

behave like

zero, zero?, pred and succ?

Hint: The length of the list corresponds to the number value.

Making Numbers

0 ≡ null

zero? ≡ null?

pred ≡ cdr

succ ≡ λ x . (cons F x)

pred ≡ λx. (cdr x)
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Lambda Calculus is a Universal Computer
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Finite State Machine

• Read/Write Infinite Tape

� Mutable Lists

• Finite State Machine

� Numbers to keep track of state

• Processing

� Way of making decisions (if)

☯ Way to keep going
We have this, but we cheated 

using ≡≡≡≡ to make recursive 

definitions!

Having names and definitions 

is much more complex than 

Lambda calculus.

Way to Keep Going: The Y-Combinator

Y = λf (λx . (f (x x)) (λx . f (x x))

This finds the fixed point of any function!

(Y G) = (G (Y G))



Universal Computer

• Lambda Calculus can simulate a Turing Machine

– Everything a Turing Machine can compute, Lambda 

Calculus can compute also

• Turing Machine can simulate Lambda Calculus 

(we didn’t prove this)

– Everything Lambda Calculus can compute, a Turing 

Machine can compute also

• Church-Turing Thesis: this is true for any other 

mechanical computer also

Computability in Theory and 

Practice

(Intellectual Computability 

Discussion on TV Video)

http://www.funny-videos.co.uk/videoAliGScienceVideo39.html

http://video.google.com/videoplay?docid=1623254076490030585#

Ali G Problem

Input: a list of 2 numbers with up to d digits each

Output: the product of the 2 numbers

Is it computable?
Yes – a straightforward algorithm

solves it.  Using elementary 

multiplication techniques we know 

it is in O(d2)

Can real computers solve it?

Ali G was Right!

• Theory assumes ideal computers:

– Unlimited, perfect memory

– Unlimited (but finite) time

• Real computers have:

– Limited memory, time, power outages, flaky 

programming languages, etc.

– There are many computable problems we cannot 

solve with real computer: the actual inputs do

matter (in practice, but not in theory!)

Things Real Computers Can Do

That Turing Machines Cannot

Generate Heat

Stop a Door

Provide an adequate 

habitat for fish



Nondeterministic Turing Machine

• At each step, instead of making one choice 

and following it, the machine can 

simultaneously try two choices.  

• If any path of choices leads to a halting state, 

that machine’s state is the result of the 

computation.

1

2

3

Ways to Think about Nondeterminism

Omnipotent: It can try all possible 
solutions at once to find the one that is 
right.

Omniscient: Whenever it has to make a 
choice, it always guess right.

Can a regular TM model a nondeterministic TM?

Yes, just simulate all the possible machines.

Can a nondeterministic TM solve problems in 

polynomial time (O(Nk) for some constant k) 

that cannot be solved in polynomial time by a 

regular TM?

Answer: Unknown!  This is the most famous and 

important open question in Computer Science: P = NP?

Ways to answer this:

1. Write a polynomial time pegboard puzzle 

solver (or prove it can’t be done)

2. Write a polynomial time optimal photomosaic

maker (or prove it can’t be done)

3. ...

Course Summary: Three Main Themes

Recursive Definitions

Recursive procedures, recursive data structures, 
languages

Universality

Procedures are just another kind of data

A universal computing machine can simulate all other 
computing machines

Abstraction: giving things names and hiding details

Digital abstraction, procedural abstraction, data 
abstraction, objects

Things that are likely to be on the Final

Defining Procedures
– How to define procedures to solve problems, recursive 

procedures

– Functional and imperative style programming

Analyzing Procedures
– Asymptotic run-time analysis, memory use

Interpreters
– Understanding how interpreter defines meaning and running 

time of a language

– Being able to change a language by modifying an interpreter

Computing Models
– Proving a problem is computable or noncomputable

– Is a computing model equivalent to a TM?

NYTimes article today that mentions my 2005 crypto final!

Charge

• Sunday (4:59pm): to qualify for a presentation, 

you must have some basic functionality working

• Monday: Project Presentations

– or...Project Reports (for non-presenting teams)

– Presentation time will be divided among the 

qualifying teams (if all teams qualify, less than 2 

minutes!): time to explain your project and demo its 

most interesting functionality

• Final Exam: will be posted Monday

I will have extended extra office hours (either in my office or Small Hall) on Sunday 

afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)


