Reminders

- To qualify for a presentation your team must send me an email containing the URL of your site (with some working basic functionality) before 4:59pm Sunday
 - Presentation time will be divided between qualifying teams
 - Teams will present in reverse order of qualification time
 - Non-presenting teams only turn in reports instead (before midnight Monday)
- Final will be posted Monday, and due Friday (Dec 11)
 - If this scheduling causes you undue hardship, it may be possible to get an extension to Monday (Dec 14)

I will have extended extra office hours (either in my office or Small Hall) on Sunday afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)

Equivalent Model Computers?

Equivalent Model Computers?

Simulating a Turing Machine

In search of *the truth*?

- What does **true** mean?
- **True** is something that when used as the first operand of if, makes the value of the if the value of its second operand:
 \[
 (\text{if } T \; M \; N) \rightarrow M
 \]

Don’t search for T, search for if

\[T \equiv \lambda x \; (\lambda y \; x) \]
\[F \equiv \lambda x \; (\lambda y \; y) \]
\[\text{if} \equiv \lambda p \; (\lambda a \; (pa) \; a) \]

Just like in **LazyScheme**:

(define true (lambda (a b) a))
(define false (lambda (a b) b))
(define if (lambda (p c a) (p c a))
Simulating a Turing Machine

- Read/Write Infinite Tape
- Lists
- Finite State Machine
- Numbers
- Processing
 - Way to make decisions (if)
 - Way to keep going

Making Lists

\[
\begin{align*}
\text{(define (make-pair x y)} & \text{)} \\
\text{(lambda (selector) (if selector x y))} & \\
\text{(define (car-of-pair p) (p true))} \\
\text{(define (cdr-of-pair p) (p false))} \\
\text{cons} & \equiv \lambda x. \lambda y. (\lambda z.(z x y)) \\
\text{car} & \equiv \lambda x. (x T) \\
\text{cdr} & \equiv \lambda x. (x F) \\
\text{null} & \equiv \lambda x. T \\
\text{null?} & \equiv \lambda x. (x (\lambda y. \lambda z. F))
\end{align*}
\]

Simulating a Turing Machine

Meaning of Numbers

- “11-ness” is something who’s successor is “12-ness”
- “11-ness” is something who’s predecessor is “10-ness”
- “Zero” is special. It has a successor “one-ness”, but no predecessor.

What is 11?

- eleven
- elf
- undici
- once
- XI
- одиннадцать
- イレブン

Making Lists

\[
\begin{align*}
\text{(pred (succ N)} & \text{)} \rightarrow N \\
\text{(succ (pred N)} & \text{)} \rightarrow N \\
\text{(succ (pred (succ N))}) & \rightarrow (\text{succ N}) \\
\text{(zero? zero)} & \rightarrow T \\
\text{(zero? (succ zero))} & \rightarrow F
\end{align*}
\]
Is this enough?

Can we define add with pred, succ, zero? and zero?

\[\text{add} \equiv \lambda x . \lambda y. \]
\[(\text{if} \ (\text{zero?} \ x) \ y \ (\text{add} \ (\text{pred} \ x) \ (\text{succ} \ y)) \]

Can we define lambda terms that behave like zero, zero?, pred and succ?

\[\text{Hint: The length of the list corresponds to the number value.} \]

Making Numbers

\[0 \equiv \text{null} \]
\[\text{zero?} \equiv \text{null?} \]
\[\text{pred} \equiv \text{cdr} \]
\[\text{succ} \equiv \lambda x . \ (\text{cons} \ F \ x) \]
\[\text{pred} \equiv \lambda x . \ (\text{cdr} \ x) \]

Lambda Calculus is a Universal Computer

Way to Keep Going: The Y-Combinator

\[\text{Y} = \lambda f . (\lambda x . (f \ (x \ x))) \ (\lambda x . (f \ (x \ x))) \]
\[\text{This finds the fixed point of any function!} \]
\[\text{(Y G)} = (G \ (Y \ G)) \]
Universal Computer

• Lambda Calculus can simulate a Turing Machine
 – Everything a Turing Machine can compute, Lambda Calculus can compute also
• Turing Machine can simulate Lambda Calculus (we didn’t prove this)
 – Everything Lambda Calculus can compute, a Turing Machine can compute also
• Church-Turing Thesis: this is true for any other mechanical computer also

Computability in Theory and Practice

(Intellectual Computability Discussion on TV Video)

http://video.google.com/videoplay?docid=1623254076490030585#

Ali G Problem

Input: a list of 2 numbers with up to d digits each
Output: the product of the 2 numbers

Is it computable?
Yes – a straightforward algorithm solves it. Using elementary multiplication techniques we know it is in $O(d^2)$
Can real computers solve it?

Ali G was Right!

• Theory assumes ideal computers:
 – Unlimited, perfect memory
 – Unlimited (but finite) time
• Real computers have:
 – Limited memory, time, power outages, flaky programming languages, etc.
 – There are many computable problems we cannot solve with real computer: the actual inputs do matter (in practice, but not in theory!)
Nondeterministic Turing Machine

• At each step, instead of making one choice and following it, the machine can simultaneously try two choices.
• If any path of choices leads to a halting state, that machine’s state is the result of the computation.

Can a nondeterministic TM solve problems in polynomial time ($O(N^k)$ for some constant k) that cannot be solved in polynomial time by a regular TM?

Answer: Unknown! This is the most famous and important open question in Computer Science: $P = NP$?

Ways to Think about Nondeterminism

Omnipotent: It can try all possible solutions at once to find the one that is right.

Omniscient: Whenever it has to make a choice, it always guess right.

Can a regular TM model a nondeterministic TM?

Yes, just simulate all the possible machines.

Course Summary: Three Main Themes

Recursive Definitions
Recursive procedures, recursive data structures, languages

Universality
Procedures are just another kind of data
A universal computing machine can simulate all other computing machines

Abstraction: giving things names and hiding details
Digital abstraction, procedural abstraction, data abstraction, objects

Things that are likely to be on the Final

Defining Procedures
– How to define procedures to solve problems, recursive procedures
– Functional and imperative style programming

Analyzing Procedures
– Asymptotic run-time analysis, memory use

Interpreters
– Understanding how interpreter defines meaning and running time of a language
– Being able to change a language by modifying an interpreter

Computing Models
– Proving a problem is computable or noncomputable
– Is a computing model equivalent to a TM?

NYTimes article today that mentions my 2005 crypto final!

Charge

• Sunday (4:59pm): to qualify for a presentation, you must have some basic functionality working
• Monday: Project Presentations
 – or...Project Reports (for non-presenting teams)
 – Presentation time will be divided among the qualifying teams (if all teams qualify, less than 2 minutes!): time to explain your project and demo its most interesting functionality
• Final Exam: will be posted Monday

I will have extended extra office hours (either in my office or Small Hall) on Sunday afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)