Reminders

* To qualify for a presentation your team must send me
an email containing the URL of your site (with some
working basic functionality) before 4:59pm Sunday

— Presentation time will be divided between qualifying
teams

— Teams will present in reverse order of qualification time

— Non-presenting teams only turn in reports instead (before
midnight Monday)

* Final will be posted Monday, and due Friday (Dec 11)

— If this scheduling causes you undue hardship, it may be
possible to get an extension to Monday (Dec 14)

1 will have extended extra office hours (either in my office or Small Hall) on Sunday
afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)

Equivalent Model Computers?

term = variable
| term term
| (term)
| A variable . term

Uele [z fz]zfz [0 |

<
e
s can simulate?
[]

III can simulate? with xs replaced by N

Finite State Machine

Turing Machine Lambda Calculus

Simulating a Turing Machine

2|z o Jzfz]z [z]zfz]zfz]z0z]z0z]z0z]z0z]:]

__ | Read/Write Infinite Tape
W* Lists

Finite State Machine
| Numbers

Finite State Machine Processing
Way to make decisions (if)
Way to keep going

In search of the truth?

¢ What does true mean?

* True is something that when used as the first
operand of if, makes the value of the if the
value of its second operand:

(fFTMN)—> M

Don’t search for T, search for if
T=Ax (Ay. x)
F=Ax(Ay.y)

Ap (Ac (Aa . (pc)a)

Just like in LazyScheme:

i @
-
Il

(define true (lambda (a b) a))
(define false (lambda (a b) b))
(define if (lambda (p c a) (p c a))

Simulating a Turing Machine Making Lists

(define (make-pair x y)
(lambda (selector) (if selector x y)))
Read/Write Infinite Tape

L : e ectc
) Lists (gezfne (Czr 01; pair p) (p :rtlxe))
Finite State Machine (define (cdr-of-pair p) (p false))

2|z Jzfzz[z]zfz]zfz]zfz]z0z]z0z]z02]z]

o Numb
Finite State Machine PrOCGSSil:];n ers cons = Ax. }\,y (7\;Z (Z X y))
Way to make decisions (if) car=Ax.(x T) T=2Ax (Ay. x)
Way to keep going cdr=Ax.(x F)
null = Ax.T
null? = Ax. (x (Ay . Az. F))
Simulating a Turing Machine What is 117?
2]z |z |22z [z]z]z]z0z]z]z]z]z[z]z]z]z]:]
1T eleven olf dici
L] Read/Write Infinite Tape undici
*6/\ III Lists 11 + .
Finite State Machine
= = Numbers once Xl
Finite State Machine Processing
Way to make decisions (if) . OoAWHHaALATb
Way to keep going Y= dal onze
1LY
Meaning of Numbers Meaning of Numbers

* “11-ness” is something who's successor

is “12-ness” (pred (succ N)) > N

(succ (pred N)) > N

e “11-ness” i thi ho’
NESs™ 15 something who's (succ (pred (succ N))) — (succ N)

predecessor is “10-ness”

» “Zero” is special. It has a successor “one-

(zero? zero) > T
ness”, but no predecessor.

(zero? (succ zero)) —» F

Is this enough?

Can we define add with pred, succ, zero?
and zero?

add =Ax. Ay.
(if (zero? x) y (add (pred x) (succ y))

Can we define lambda terms that
behave like
zero, zero?, pred and succ?

Hint: The length of the list corresponds to the number value.

Making Numbers
0 =null
zero? = null?
pred = cdr
succ=A x . (cons F x)
pred = Ax. (cdr x)

42 = My.O\,Z.Z Xy) Axy. y Axy.(Az.z xy) Axy. y

Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z
xy) Axy. y Ay (Az.z xy) Axy. y Ay (Az.z xy) Axy. y Ay (Az.z xy) Axy.
¥ Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y
Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z
xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy.
¥ Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y
Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z
xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy.
v Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y
Axy.(Az.z xy) Axy. y Ay (Az.z xy) Axy. y Ay (Az.z xy) Axy. y Axy.(Az.z
xy) Axy. y Ay (Az.z xy) Axy. y Ay (Az.z xy) Axy. y Aoy (Az.z xy) Axy.

y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) Axy. y Axy.(Az.z xy) }ny y
Ax.T

Lambda Calculus is a Universal Computer

2|z o Jafz]z [z]zfz]zfz]afz]z0z]z0z]z02]z]

E-me)s

* Read/Write Infinite Tape

v Mutable Lists
= D | o Finite State Machine
v Numbers to keep track of state

Finite State Machine .
® Processing

Way of making decisions (if)
Way to keep going |

We have this, but we cheated | é
using = to make recursive
definitions!

Having names and definitions
is much more complex than
Lambda calculus.

Way to Keep Going: The Y-Combinator

Af (alf o)Az fE

Y = O (f (2 x)) (. f (x X))
This finds the fixed point of any function!
(YG)=(G(YG))

Universal Computer

* Lambda Calculus can simulate a Turing Machine
— Everything a Turing Machine can compute, Lambda
Calculus can compute also
e Turing Machine can simulate Lambda Calculus
(we didn’t prove this)
— Everything Lambda Calculus can compute, a Turing
Machine can compute also
¢ Church-Turing Thesis: this is true for any other
mechanical computer also

Computability in Theory and
Practice

(Intellectual Computability
Discussion on TV Video)

http://video.google.com/videoplay?docid=1623254076490030585#

http://www.funny-videos.co.uk/videoAliGScienceVideo39.html

Ali G Problem

Input: a list of 2 numbers with up to d digits each
Output: the product of the 2 numbers

Is it computable?
Yes — a straightforward algorithm
solves it. Using elementary
multiplication techniques we know
itisin O(d?)

Can real computers solve it?

Insert Pagelayout Formulas

=28 X | caiibri s -
By e mEr
Pate 5 | o A

Clipboard 5 Font

A6

£ | =PRODUCT(AL:AS)

A B8
999999999

96059600903940400]

e [~ fa oo win e

e
5

¥ | Sheet1 ,Sheet? ,“Sheet3 %]

=[x

eady

4 Python Shell =RIC)

Eile Edit Debug Options Windows Help
»»> 989999999 % 99 * 99 % 99 ~ 99
96059600903940399L.

>

Ln: 380 |Col: 4

Ali G was Right!

* Theory assumes ideal computers:
— Unlimited, perfect memory
— Unlimited (but finite) time

* Real computers have:

— Limited memory, time, power outages, flaky
programming languages, etc.

— There are many computable problems we cannot
solve with real computer: the actual inputs do
matter (in practice, but not in theory!)

Things Real Computers Can Do
That Turing Machines Cannot

Generate Heat

Stop a Door

Provide an adequate
habitat for fish

Nondeterministic Turing Machine

* At each step, instead of making one choice
and following it, the machine can
simultaneously try two choices.

If any path of choices leads to a halting state,
that machine’s state is the result of the
computation.

Ways to Think about Nondeterminism

Omnipotent: It can try all possible
solutions at once to find the one that is
right.

Omniscient: Whenever it has to make a
choice, it always guess right.

Can a regular TM model a nondeterministic TM?

| Yes, just simulate all the possible machines.

Can a nondeterministic TM solve problems in
polynomial time (O(N¥) for some constant k)
that cannot be solved in polynomial time by a
regular TM?

Answer: Unknown! This is the most famous and

important open question in Computer Science: P = NP?

Ways to answer this:
Write a polynomial time pegboard puzzle
g WL AW solver (or prove it can’t be done)
\-&:"{‘bf ;ét y 2. Write a polynomial time optimal photomosaic
v gﬁw maker (or prove it can’t be done)
e A

A T

COMMUNICATIONS
ACM

&

—
w

Course Summary: Three Main Themes

Recursive Definitions

Recursive procedures, recursive data structures,
languages

Universality
Procedures are just another kind of data

A universal computing machine can simulate all other
computing machines

Abstraction: giving things names and hiding details

Digital abstraction, procedural abstraction, data
abstraction, objects

Things that are likely to be on the Final

Defining Procedures

— How to define procedures to solve problems, recursive
procedures

— Functional and imperative style programming
Analyzing Procedures

— Asymptotic run-time analysis, memory use
Interpreters

— Understanding how interpreter defines meaning and running
time of a language

— Being able to change a language by modifying an interpreter
Computing Models

— Proving a problem is computable or noncomputable

— Is a computing model equivalent to a TM?

NYTimes article today that mentions my 2005 crypto final!

Charge

e Sunday (4:59pm): to qualify for a presentation,
you must have some basic functionality working

* Monday: Project Presentations
— or...Project Reports (for non-presenting teams)

— Presentation time will be divided among the
qualifying teams (if all teams qualify, less than 2
minutes!): time to explain your project and demo its
most interesting functionality

* Final Exam: will be posted Monday

| will have extended extra office hours (either in my office or Small Hall) on Sunday
afternoon, 1:30-5pm (groups that upload projects by Saturday will have priority)

