
Class 6:Class 6:

Programming Programming

with Datawith Data

David EvansDavid Evans

cs1120 Fall 2009cs1120 Fall 2009

Returning Problem Sets Problem

Input: unordered set of cs1120 students

Output: cs1120 students in lexicographic order

by UVa ID

2

What is a good

algorithm for getting

all of you in order by

UVa ID?

Ways to Design Programs

1. Think about what you want to do, and turn

that into code.

2. Think about what you need to represent,

and design your code around that.

Which is better?

3

History of Scheme

• Scheme [Guy Steele & Gerry Sussman, 1975]

Guy Steele co-designed Scheme and created the

first Scheme interpreter for his 4th year project

More recently, Steele specified Java [1995]

– “Conniver” [1973] and “Planner” [1967]

• Based on LISP [John McCarthy, 1958]

– Based on Lambda Calculus [Alonzo Church,

1930s]

– Last few lectures in course

4

LISP

“Lots of Insipid Silly Parentheses”

“LISt Processing language”

Lists are pretty important – hard to

write a useful Scheme program without

them.

5

Making Lists

6

Making a Pair

> (cons 1 2)

(1 . 2)

cons constructs a pair

1 2

7

Splitting a Pair

> (car (cons 1 2))

1

> (cdr (cons 1 2))

2

car extracts first part of a pair

cdr extracts second part of a pair

1 2

car cdr

8

Why “car” and “cdr”?

• Original (1950s) LISP on IBM 704

– Stored cons pairs in memory registers

– car = “Contents of the Address part of the Register”

– cdr = “Contents of the Decrement part of the Register”

(“could-er”)

• Doesn’t matter unless you have an IBM 704

• Think of them as first and rest

(define first car)

(define rest cdr)

(The DrScheme “Pretty Big” language already

defines these, but they are not part of standard

Scheme)

9

Implementing cons, car and cdr

(define (cons a b)

(lambda (w) (if w a b)))

(define (car pair) (pair #t)

(define (cdr pair) (pair #f)

Scheme provides primitive implementations for cons, car,

and cdr. But, we could define them ourselves.

10

Pairs are fine, but how do we

make threesomes?

11

Triple

A triple is just a pair where one of the
parts is a pair!

(define (triple a b c)

(cons a (cons b c)))

(define (t-first t) (car t))

(define (t-second t) (car (cdr t)))

(define (t-third t) (cdr (cdr t)))

12

Quadruple

A quadruple is a pair where the second part is
a triple

(define (quadruple a b c d)

(cons a (triple b c d)))

(define (q-first q) (car q))

(define (q-second q) (t-first (cdr t)))

(define (q-third t) (t-second (cdr t)))

(define (q-fourth t) (t-third (cdr t)))

13

Multuples

• A quintuple is a pair where the second part is a

quadruple

• A sextuple is a pair where the second part is a

quintuple

• A septuple is a pair where the second part is a

sextuple

• An octuple is group of octupi

• A ? is a pair where the second part is a …?

14

Lists

List ::= (cons Element List)

A list is a pair where the second part is a list.

One big problem: how do we stop?

This only allows infinitely long lists!

15

Lists

List ::= (cons Element List)

List ::=

A list is either:

a pair where the second part is a list

or, empty

It’s hard to write this!

16

Null

List ::= (cons Element List)

List ::=

A list is either:

a pair where the second part is a list

or, empty (null)

null

17

List Examples

> null

()

> (cons 1 null)

(1)

> (list? null)

#t

> (list? (cons 1 2))

#f

> (list? (cons 1 null))

#t

18

More List Examples

> (list? (cons 1 (cons 2 null)))

#t

> (car (cons 1 (cons 2 null)))

1

> (cdr (cons 1 (cons 2 null)))

(2)

19

Recap

• A list is either:

a pair where the second part is a list

or null (note: book uses nil)

• Pair primitives:

(cons a b) Construct a pair <a, b>

(car pair) First part of a pair

(cdr pair) Second part of a pair

20

Problem Set 2:

Programming with Data

• Representing a card

car cdr

Pair of rank (Ace) and suit (Spades)

21

Problem Set 2:

Programming with Data

• Representing a card:

(define (make-card rank suit) (cons rank suit))

• Representing a hand

(list (make-card Ace clubs)

(make-card King clubs)

(make-card Queen clubs)

(make-card Jack clubs)

(make-card 10 clubs))

22

list-trues

Define a procedure that takes as input a list,

and produces as output the number of non-

false values in the list.

(list-trues null) → 0

(list-trues (list 1 2 3)) → 3

(list-trues (list false (list 2 3 4))) → 1

23

Charge

• Now, you know everything you need for

Problem Set 2 (and PS3 and PS4)

– Help hours Sunday, Monday, Tuesday, Wednesday

• Probably a Quiz Wednesday

– Course book through Sec. 5.4 and GEB reading

• Class Wednesday and Friday:

– Lots of examples programming with procedures

and recursive definitions

24

