
Class 7:Class 7:

List ProceduresList Procedures

David EvansDavid Evans

cs1120 Fall 2009cs1120 Fall 2009

List Recap

• A List is either:

(1) a Pair whose second part is a List

or (2) null

• Pair primitives:

(cons a b) Construct a pair <a, b>

(car pair) First part of a pair

(cdr pair) Second part of a pair

2

List Examples

> null

()

> (cons 1 null)

(1)

> (list? null)

#t

> (list? (cons 1 2))

#f

> (list? (cons 1 null))

#t

3

More List Examples

> (list? (cons 1 (cons 2 null)))

#t

> (car (cons 1 (cons 2 null)))

1

> (cdr (cons 1 (cons 2 null)))

(2)

4

List Procedures

• Be very optimistic! Since lists themselves are recursive
data structures, most problems involving lists can be
solved with recursive procedures.

• Think of the simplest version of the problem,
something you can already solve. This is the base case.
For lists, this is usually when the list is null.

• Consider how you would solve the problem using the
result for a slightly smaller version of the problem. This
is the recursive case. For lists, the smaller version of
the problem is usually the cdr of the list.

5

list-trues

Define a procedure that takes as input a list,

and produces as output the number of non-

false values in the list.

(list-trues null) → 0

(list-trues (list 1 2 3)) → 3

(list-trues (list false (list 2 3 4))) → 1

6

list-trues

• Be very optimistic! Since lists themselves are recursive
data structures, most problems involving lists can be
solved with recursive procedures.

• Think of the simplest version of the problem,
something you can already solve. This is the base case.
For lists, this is usually when the list is null.

• Consider how you would solve the problem using the
result for a slightly smaller version of the problem. This
is the recursive case. For lists, the smaller version of
the problem is usually the cdr of the list.

7

list-trues

• Be very optimistic! Since lists themselves are recursive
data structures, most problems involving lists can be
solved with recursive procedures.

• Think of the simplest version of the problem,
something you can already solve. This is the base case.
For lists, this is usually when the list is null.

• Consider how you would solve the problem using the
result for a slightly smaller version of the problem. This
is the recursive case. For lists, the smaller version of
the problem is usually the cdr of the list.

8

(define (list-trues p)

(if (null? p)

0

))

list-trues

• Be very optimistic! Since lists themselves are recursive
data structures, most problems involving lists can be
solved with recursive procedures.

• Think of the simplest version of the problem,
something you can already solve. This is the base case.
For lists, this is usually when the list is null.

• Consider how you would solve the problem using the
result for a slightly smaller version of the problem.
This is the recursive case. For lists, the smaller version
of the problem is usually the cdr of the list.

9

(define (list-trues p)

(if (null? p)

0

(+ (if (car p) 1 0)

(list-trues (cdr p))))) Quiz

10

list-sum

Define a procedure, list-sum, that takes a list of

numbers as input and outputs the sum of the

numbers in the input list.

11

(list-sum (list 1 2 3)) → 6

(list-sum null) → 0

list-length

Define a procedure, list-length, that takes a list

as input and outputs the number of elements in

the input list.

12

(list-length (list 1 2 3)) → 3

(list-length (list 1 (list 2 3))) → 2

(list-length null) → 0

Charge

• We’ll repeat the Quiz on Friday if it seems too

few people have done the readings well

• Problem Set 2: Due Monday

– It is much longer than PS1, don’t wait to get

started

– Help hours tonight in Olsson 001

• Friday: Recursive Procedures Practice

13

