
cs1120: Exam 1 Comments 

 

 

 

 
Problem 0 1 2 3 4 5 6 7 8 9 10 11 

Average Score 9.9 7.6 7.2 9.5 9.1 8.6 6.4 7.9 8.2 8.5 5.6 5.0 

  

 

Total Grade Distribution: 
 
Range     Number 
< 70    9 
70-79    5 
80-89  13 
90-99  23 
100-109  14 
110+  12 
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Language 
 

1. A name in Scheme is any sequence of letters, digits, and special characters (like ! and ?) that 

starts with a letter or special character.  Assume the nonterminals Letter, Digit, and 

SpecialCharacter are defined to produce the set of all letters, digits, and special characters 

respectively.  Define a BNF grammar that describes the set of valid names in Scheme.  Your 

language should include a, u2, !yuck, and yikes?47, but should not include 2a or the empty 

string. 

 

 

 

Evaluation Rules 

2. For each of the Scheme expressions below, give the value the expression evaluates to or 

explain why it is an error.  No explanations are necessary, but if the expression evaluates to a 

procedure you should explain clearly what the procedure is.  (Please remember that you are 

not allowed to use a Scheme interpreter for this exam.) 

 

a. (+ 1 1) 

 

b. car 

 

c. (cdr (list 1)) 

 

d. (lambda (x) 17) 

  

 

e. ((lambda (p) (list-accumulate (lambda (a b) (if (> a b) a b)) 0 p)) (list 1 2 3))   

Assume list-accumulate is defined as in Section 5.4.2 of the book. 

 
Name ::= Letter MoreChars | SpecialCharacter MoreChars 

MoreChars ::= Letter MoreChars | Digit MoreChars | 
SpecialCharacter MoreChars | e 
 

 2     

     null 

the built-in procedure that extracts the first part of a pair 

Name ::= Letter MoreChars | SpecialCharacter MoreChars 
MoreChars ::= Letter MoreChars | Digit MoreChars | 

SpecialCharacter MoreChars | ε 
 

     a procedure that takes one input and always outputs 17 

     3 
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List Procedures 
 

3. Define a procedure list-increment that takes as input a List of numbers and produces as output 

a List containing each element in the input List incremented by one.  For example,  

(list-increment (list 1 2))  

evaluates to the List (2 3). (This is Exercise 5.17 in the book.  You may use any of the 

procedures defined in Chapter 5 in your answer.) 

 

 

 

 

 

 

4. Define a procedure list-combiner that takes as input two Lists of the same length and 

produces as output a List whose elements are pairs of the corresponding elements in the two 

input lists.  For example,  

(list-combiner (list 1 2 3) (list 4 5 6)) 

evaluates to the List containing three cons pairs: ((1. 4) (2 . 5) (3 . 6)).   (It is okay if your 

procedure produces an error if the two input lists have different lengths.) 

(define (list-increment p) 

   (list-map (lambda (x) (+ x 1)) p)) 

Without using list-map: 
(define (list-increment p) 

   (if (null? p) null 

       (cons (+ 1 (car p)) (list-increment (cdr p)))))  

(define (list-combiner p q) 

   (if (null? p) null 

       (cons (cons (car p) (car q)) 

             (list-combiner (cdr p) (cdr q)))) 

 

Or, the simplest way is to use the built-in map which can operate on multiple lists: 
 

(define (list-combiner p q)(map cons p q)) 
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Analyzing Procedures 
 

5. What is the asymptotic running time for the list-count-matches procedure defined below: 

 

(define (list-count-matches p v) 

   (if (null? p) 0 

        (if (= (car p) v)  

             (+ 1 (list-count-matches (cdr p) v)) 

             (list-count-matches (cdr p) v)))) 

 

For full credit, your answer must provide a tight bound on the running time and include a clear 

and convincing explanation. You may assume the input v is a number between 0 and 9999. 

 

 

6. What is the asymptotic running time for the list-find-first-duplicate procedure defined below: 

 

(define (list-find-first-duplicate p) 

   (if (null? p)  

        (error “No duplicate found”) 

        (if (> (list-count-matches (cdr p) (car p)) 0) 

             (car p) 

             (list-find-first-duplicate (cdr p))))) 

 

For full credit, your answer must provide a tight bound on the running time and include a clear 

and convincing explanation. You may assume all the elements in p are numbers between 0 and 

9999 but for full credit must explain why an assumption like this is necessary. 

The running time is in Θ(N) where N is the number of elements in p.  The body of the procedure 

involves only applications of constant time procedures: cdr, car, null?, + (where the first input is 

the constant 1), and = (which is constant time because of the assumption that v is bounded).  

The number of recursive calls is the number of elements in p since each recursive call (on both 

branches) uses (cdr p) as the new value of p.  Thus, there are p applications of a constant time 

body, so the running time is in Θ(N) where N is the number of elements in p. 

The running time is in Θ(N
2
) where N is the number of elements in p.  From question 5, the 

running time for list-count-matches is linear in the length of its first input.  For each application 

of list-find-first-duplicate, we evaluate (list-count-matches (cdr p)), so this involves Θ(M) work 

where M is the number of elements in p – 1.  In the worst case, the first duplicate is at the end 

of the list (or there is not duplicate), so we need to make N-1 recursive calls.  Each call involves 

applications of constant time procedures (we need the assumption that the values of the 

elements of p are bounded in order for > to be constant time) and the list-count-matches.  The 

average length of the first input to list-count-matches is N/2, so this is Θ(N/2) work = Θ(N) for 

each recursive call.  There are up to N-1 recursive calls, so the total running time is in Θ(N
2
).  



 5 

 

7. Draw a picture illustrating the asymptotic growth rates of the following functions and sets of 

functions:  

a. 2
n
  

b. O(n
2
)  

c. Θ(n)  

d. Ω(n
2
)  

e. 3n + 6 

 

The center of your picture should be the slowest growing functions, and as you move further from 

the center, functions grow faster (similar to Figure 7.2 in the book). If you are depicting a set, use 

arrows or color to make it clear what space is included in the set.   (There is no need for a fancy 

drawing.  It is fine to hand draw something clear.) 

b, c, and d should be sets; a and e are points. 

 

a is a point outside the outermost circle. 

b is the points inside and on the edge of the n2 circle 

d is the points outside and on the edge of the n2 circle 

c is a ring inside the n2 circle 

e is a point in the ring c. 

 

2n O(n2)

Θ(n)

Ω(n2)

3n+6
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Finding Repeats 
 

One of the main things Colossus did to break the Lorenz cipher was to look for key settings 

where there were many repeated letters.  This was useful since most languages (including 

German) use repeated letters (for example the two t’s in letters) more often than would occur if 

letters were distributed randomly.   

 

8. Define a procedure, count-repeats, that takes as input a List of numbers.  It produces as 

output a number that indicates the number of repeated numbers in the input list.  We consider 

a number a repeat if it matches the previous number in the list.  So,  

   (count-repeats (list 1 1 2 0))  should evaluate to 1 (the second 1 is a repeat) 

   (count-repeats (list 2 2 2))  should evaluate to 2 (the second and third 2 are repeats) 

   (count-repeats (list 1 2 1 2 1))  should evaluate to 0. 

For full credit, your procedure must work correctly for all possible inputs that are Lists of 

numbers. 

 

 

9. Analyze the asymptotic running time of your count-repeats procedure.  You may assume all 

numbers in the input list are less than 9999. 

(define (count-repeats p) 

   (if (null? p) 0 
       (if (null? (cdr p)) 0 

           (if (= (car p) (car (cdr p))) 
                (+ 1 (count-repeats (cdr p))) 

                (count-repeats (cdr p)))))) 
 

My procedure has running time in Θ(N) where N is the number of elements in p.  Each recursive 

call involves only constant-time procedures (because of the assumption about the input list 

numbers, = can be considered constant time); each call removes on element from the input list 

p. 
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 [These last two questions are meant to be challenging. You are encouraged to answer them, but if 

you answer the rest of the questions well it is not necessary to answer these questions to achieve 

“A”-level performance on the exam.] 

 

10. Define a procedure, count-unique, that takes as input a list of numbers.  It produces as output 

a number that indicates the number of unique numbers in the input list.  So,  

   (count-unique (list 1 1 2 0))  should evaluate to 3. 

   (count-unique (list 2 2 2))  should evaluate to 1. 

   (count-unique (list 1 2 1 2 1))  should evaluate to 2. 

 

For full credit, your procedure must work correctly for all possible inputs that are Lists of 

numbers. 

  

 

There are many different ways to define count-unique, some of which use 

procedures from earlier exam questions.   

 

The easiest definition is to observe that if the list is sorted, then the non-unique 

numbers will be adjacent.  So, we can use count-repeats (from question 8) to count 

the repetitions, and the number of unique elements is the length of the list minus 

this: 

 

(define (count-unique p) (- (length p) (count-repeats (sort p <)))) 

 

Perhaps a more straightforward, but much longer solution is to remove the 

duplicates from the list: 

 

(define (extract-matching el p) 

  (if (null? p) null 

      (if (= el (car p)) (extract-matching el (cdr p)) p))) 

 

(define (remove-duplicates p) 

  (if (null? p) null 

      (cons (car p) (remove-duplicates (extract-matching (car p) (cdr p)))))) 

 

(define (count-unique p) (length (remove-duplicates (sort p <))))   
 

If the list isn’t sorted, it is necessary to search through the whole list for the 

duplicates to remove.  Since the list is sorted, our extract-matching procedure stops 

after finding the first matching element.  If the list is not sorted, we would instead 

need to do, 

 

(define (extract-matching el p) 

  (if (null? p) null 

      (if (= el (car p))  

          (extract-matching el (cdr p))  

          (cons el (extract-matching el (cdr p)))))) 
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11. Analyze the asymptotic running time for your count-unique procedure. Carefully define any 

variables you use and explain any assumptions needed for your analysis to be correct. 

  

 

Θ(N log N) where N is the number of elements in p.  We need to assume all the elements of p 

are within a bounded range, so the < and = procedures have constant running times.  (Note that 

this assumption actually enables an asymptotically faster solution as discussed in class.) 

 

For the simplest definition, the body is: (- (length p) (count-repeats (sort p <)) 

Note that there are no recursive calls, so we just need to sum the running-time of all the 

procedure applications: length is in Θ(N), count-repeats is in Θ(N) (from question 9), sort is in 

Θ(N log N), and – and < are constant time given the assumption about the values of the 

elements of p being in a bounded range.  The sum of Θ(N) + Θ(N) + Θ(N log N) is in Θ(N log N).  

Eventually, only the fastest growing term matters. 

 

Analyzing the second definition is more complex.  The worst case running time for extract-

matching is in Θ(M) where M is the number of elements in the second input.  The remove-

duplicates procedure involves up to W recursive calls where W is the length of its input, and 

each call involves a call to extract-matching.  This looks like the running time for extract-

matching is in Θ(W
2
) but its not.  The reason for this is the size of the input to the recursive call 

of remove-duplicates is reduces by the number of elements removed by extract-matching.  The 

running time for extract-matching scales linearly with the number of elements removed.  Hence, 

the overall running time for remove-duplicates is in Θ(W) where W is the length of its input. 

 

count-unique applies three procedures: sort, remove-duplicates, and length.  The input to sort is 

the list p, so the running time for sort is in Θ(N log N) where N is the number of elements in p. It 

produces a list of length N, which is the input to remove-duplicates, so the running time of the 

remove-duplicates application is in Θ(N). The input to length is no longer than N elements, so 

the running time for the length application is in O(N).  Thus, the total running time for count-

unique is in Θ(N log N) + Θ(N) + O(N).  The fastest growing term is the first one, so the total 

running time is in Θ(N log N). 

 

If your count-unique procedure didn’t sort the elements first, its running time is probably in 

Θ(N
2
).  This is the case for our definition using the second version of extract-matching, since this 

has running time in Θ(N) and would be evaluated up to N times. 

 

 

 


