
University of Virginia 23 September 2011

cs1120: Introduction of Computing

Explorations in Language, Logic, and Machines

Class 14: Turing’s Model

Upcoming Schedule

• Now: Problem Set 3

• Monday’s class will meet in Rice Hall Bagel Shop Area

• Monday, 3 October: Problem Set 4

• Wednesday, 12 October: Exam 1 Due (will be take-home, handed out on Friday, 7 October)

Notes and Questions

What makes a good model?

To model a computer, what are the three things we need to model?

Turing Machine

A Turing Machine is an abstract model of a digital computer. It consists of:

• An infinitely long tape, divided into squares. (The tape is usually thought of as infinitely
long only in one direction, but it is equivalent in power to a tape that is infinitely long in

both directions.)

• A finite alphabet of symbols. There is a finite set of symbols that can be written into
squares on the tape.

• A tape head that can read the alphabet symbol on a single square of the tape. For each step,
the tape head reads the symbol at the current tape position, and can move one square either

left or right.

• A finite state machine (see back) that controls the tape head.

2

Finite State Machine

A Finite State Machine is a very simple model of a machine that has a finite amount of memory

(unlike the Turing Machine model which has an infinite amount of memory since the tape is

infinitely long). A Finite State Machine consists of:

• A finite alphabet of symbols. There is a finite set of symbols that can be written into
squares on the tape.

• A finite set of states. Some of the states may be distinguished (for the FSM for a Turing
Machine, we typically have a distinguished state called “Halt” where the machine stops if

that state is reached).

• A set of decision rules. Each rule is of the form <state0, symbol> → state1. If the machine is

currently in state0 and the next input symbol is symbol, after reading the symbol the state is

now in state1.

Unlike a Turing Machine, a Finite State Machine can see each input symbol only once. You can think

of it as a machine that starts with the input on a finite tape, and process that input from left to right,

reading one square at a time.

Design a finite state machine that checks the parity of a binary number. Your machine should end

in state 0 if the input has an even number of 1’s, and end in state 1 if the input has an odd number of

1’s.

Take-Home Problem

Design a Turing Machine that starts with an input tape that starts with a “#”, is followed by a series

of “∗” and “♦” symbols, followed by a “#” at the end. The output should be the number of “∗”
symbols. A first version should produce the output in unary, leaving the output tape with a

sequence of “1” symbols followed by a “#”. For example, if the input tape is #∗♦♦∗♦∗∗♦♦∗♦♦♦#

the output tape should be “#11111#”. (A gold-star bonus solution would produce the output in

binary notation, instead of unary.)

