
University of Virginia 25 September 2011

cs1120: Introduction of Computing

Explorations in Language, Logic, and Machines

Class 15: Where are our Bagels?

Upcoming Schedule

• Monday, 3 October: Problem Set 4

• Wednesday, 12 October: Exam 1 Due (will be take-home, handed out on Friday, 7 October)

Groups

Find your “bagel buddies” and work in a group on the problems.

Asiago: Anthony Teate, Austin Collier, Ashita Dhir, Aleck Berry, Alex Shin

Blueberry: Anjali Nanda, Alexander Harasty, Bradley Phillips, Briana Balone, Cailey Fitzgerald

Chocolate Chip: Christopher Keshian, Casey Silver, Charity Savino, Caroline Mattey, Colton Beck

Cinnamon: Christopher Smith, Chi Zhang, Deeksha Kola, Deirdre Regan, David Crouch

Everything: Diana Naim, Emily McClure, Emmett Crawford, Filip Goc, Greald Coles

Garlic: Geoffrey Chow, Gregory Connock, Hannah Beattie, Harry Peppiatt, Irma Corado

Onion: Jiasheng Chen, Joshua Whelan, Jordan Chandler, Julia Dangtran, Jamie Miller,
Poppy Seed: Jane Willner, Kevin Liu, Kate Larsen, Li-Chang Wang, Michael Carmone

Pumpernickel: Matthew Bollinger, Margaret Neterval, Megan Dunne, Odette Kassar, Robert Jacobs

Sesame: Raven Smith, Samah Hasan, Sarah Cole, Reid Moseley, Victor Nguyen, Yuan Zhou

0. Class 14 Take-Home Problem

Design a Turing Machine that starts with an input tape that starts with a “#”, is followed by a series

of “∗” and “♦” symbols, followed by a “#” at the end. The output should be the number of “∗”
symbols. A first version should produce the output in unary, leaving the output tape with a

sequence of “1” symbols followed by a “#”. For example, if the input tape is #∗♦♦∗♦∗∗♦♦∗♦♦♦#

the output tape should be “#11111#”. (A gold-star bonus solution would produce the output in

binary notation, instead of unary.)

(If you’ve already worked on this problem at home as intended, discuss your approach with your

groupmates who also worked on it. If not, start with the next problem.)

1. Two-Bit Comparator

Design a simple machine that computes the greater-than operator for two,
two-bit inputs. It should produce a single output bit that has value 1 if the first

input is greater than the second input, and value 0 otherwise.

Here are a few examples:

 0 1 0 0 should output 1

 0 1 0 1 should output 0

 1 0 0 1 should output 1

 1 0 1 1 should output 0

You can describe your machine as a Scheme expression that uses only two-

input and and not procedures.

2. Building Loops

Unlike most languages, Scheme does not provide any built-in constructs for looping such as a while

or for loop. For example, here is a for loop in Python:

 for i in range(1, 10):

 print (i)

This will go through the numbers from 1 to 9 (the top of the range is not included, and execute the
loop body each time with the name i having each value in turn. So, the result is printing the

numbers 1 2 3 4 5 6 7 8 9 (each is printed on its own line, not as shown here).

Define a procedure that provides similar functionality in Scheme. For example,

 (for 1 10 (lambda (i) (display i) (newline)))

should behave identically to the Python code above. (Hint: you may find it helpful to use a begin

expression in your definition.) (Note: this will be useful for the last question on PS4.)

3. While Loops

The for procedure from the previous question is limited to loops where the loop index increases by

one for each iteration. Define a more general while procedure, where the updating and terminating

conditions are procedures. It should take four inputs: the starting (or current) value of the index,
the test procedure, the update procedure, and the body procedure.

For example,

(while 1 (lambda (i) (< i 10)) (lambda (i) (+ i 1)) (lambda (i) (display i) (newline))))

would be the same as the for expression above. And,

(define (print-list p) (while p (lambda (p) (not (null? p))) cdr (lambda (p) (display (car p)) (newline))))

defines a procedure that prints out all the elements of the input list.

