
University of Virginia 27 September 2011

cs1120: Introduction of Computing

Explorations in Language, Logic, and Machines

Class 16: Making Loops

Upcoming Schedule

• Monday, 3 October: Problem Set 4

• Wednesday, 12 October: Exam 1 Due (will be take-home, handed out on Friday, 7 October)

Upcoming Help Schedule

Today: 5-6:30pm (Jiamin, Rice 1st)
Thursday: 9:45-11am (Dave, Rice 507); 10-11:30am (Peter, Rice 1st); 1-2:30pm (Joseph, Rice 1st);

 4:30-7:30pm (Jonathan/Jiamin, Rice 1st)

Turing Machine

Transition Rules: < state, read symbol > → <next state, write symbol, direction> | Halt

What does this Turing Machine do?

<S, 1> → <S, 0, R>

<S, 0> → <S, 1, R>

<S, #> → Halt

Design a Turing Machine that starts with an input tape that starts with a “#”, is followed by a series

of “∗” and “♦” symbols, followed by a “#” at the end. The output should be the number of “∗”
symbols. A first version should produce the output in unary, leaving the output tape with a

sequence of “1” symbols followed by a “#”. For example, if the input tape is #∗♦♦∗♦∗∗♦♦∗♦♦♦#

the output tape should be “#11111#”.

Making Loops

(define (for index end proc)

 (if (>= index end)

 (void) ; this evaluates to no value

 (begin

 (proc index)

 (for (+ index 1) end proc))))

Use for to print out a multiplication table:

(define (while index test update proc)

 (if (test index)

 (begin

 (proc index)

 (while (update index) test update proc))

 index))

(define (loop index result test update proc)

 (if (test index)

 (loop (update index)

 (proc index result)

 test update proc)

 result))

(define (gauss-sum n)

 (loop 1 0 (lambda (i) (<= i n)) (lambda (i) (+ i 1)) ____________________________)))

(define (factorial n)

 (loop ____ _____ _______________________

 ____________________________________))

(define (not-null? p) (not (null? p)))

(define (list-length p)

 (loop

(define (list-accumulate f base p)

 (loop

