University of Virginia 27 September 2011
¢s1120: Introduction of Computing
Explorations in Language, Logic, and Machines

Class 16: Making Loops

Upcoming Schedule

¢ Monday, 3 October: Problem Set 4
¢ Wednesday, 12 October: Exam 1 Due (will be take-home, handed out on Friday, 7 October)

Upcoming Help Schedule

Today: 5-6:30pm (Jiamin, Rice 1st)

Thursday: 9:45-11am (Dave, Rice 507); 10-11:30am (Peter, Rice 1st); 1-2:30pm (Joseph, Rice 1st);
4:30-7:30pm (Jonathan/Jiamin, Rice 1st)

Turing Machine
Transition Rules: < state, read symbol > — <next state, write symbol, direction> | Halt

What does this Turing Machine do?
<S5, 1>—><S5,0,R>
<S5,0>—><S 1, R>
<S, #> — Halt

Design a Turing Machine that starts with an input tape that starts with a “#”, is followed by a series
of “*” and “e” symbols, followed by a “#” at the end. The output should be the number of “*”
symbols. A first version should produce the output in unary, leaving the output tape with a
sequence of “1” symbols followed by a “#”. For example, if the input tape is #+ ¢ ¢ ¢ ¢ o0 ¢ ¢ #
the output tape should be “#11111#4".



Making Loops

(define (for index end proc)
(if (>= index end)
(void) ; this evaluates to no value
(begin
(proc index)
(for (+ index 1) end proc))))

Use for to print out a multiplication table:

(define (while index test update proc)
(if (test index)
(begin
(proc index)
(while (update index) test update proc))
index))

(define (gauss-sum n)
(loop 1 0 (lambda (i) (<=in)) (lambda (i) (+i 1))

(define (factorial n)
(loop

(define (loop index result test update proc)
(if (test index)
(loop (update index)
(proc index result)
test update proc)
result))

)

(define (not-null? p) (not (null? p)))

(define (list-length p)
(loop

(define (list-accumulate f base p)
(loop



