
University of Virginia 30 September 2011

cs1120: Introduction of Computing

Explorations in Language, Logic, and Machines

Class 17: Golden Sneezewort

Upcoming Schedule

• Monday, 3 October: Problem Set 4

• Wednesday, 12 October: Exam 1 Due (will be take-home and open book). Exam 1 will be

handed out on Friday, 7 October. Exam 1 covers:

− Problem Sets 1-4 including PS Comments 1-4

− Course Book Chapters 1-6

− Classes 1-18 (but not the new material on cost and running time)

Information on the Assistant Coaches’ review session for Exam 1 and office hours next week

will be posted on the course site later today.

Generalizing Loops

Define a general loop procedure that takes 5 inputs:

− index (a value that is the current object for looping),

− result (a value that accumulates the result),

− test (a procedure that takes the current index as input and outputs true if the loop should

continue, false otherwise),

− update (a procedure that takes the current index as input and outputs the next index), and

− proc (a procedure that takes two inputs, the current index and current result, and outputs

the next result).

(define (loop index result test update proc)

 (define (___________ n)

 (loop 1 0 (lambda (i) (<= i n)) (lambda (i) (+ i 1)) (lambda (i res) (+ res i))))

(define (factorial n)

 (loop ____ _____ _______________________

 ____________________________________))

(define (list-length p)

 (loop

(define (list-accumulate f base p)

 (loop

Measuring Cost

Hofstadter’s Definition: (modified to use 0 base)

“These numbers are best defined recursively by the pair of formulas

 FIBO (n) = FIBO (n – 1) + FIBO (n – 2) for n > 1

 FIBO (1) = 1, FIBO (0) = 0”

Define a (simple recursive) procedure that computes the nth Fibonacci number:

Define a procedure that computes the nth Fibonacci number using loop:

How should computer scientists measure the cost of evaluating a procedure application?

Why is it more useful to understand how the cost scales with the size of the input, than to know the
absolute running time for some particular inputs?

If f(0) = c and f(n) = k⋅f(n-1) how can we directly compute f(n)? (Try c = 1 and k = 2 as an example.)

