University of Virginia cs1120: Introduction of Computing Explorations in Language, Logic, and Machines

Class 19: Analyzing Algorithms

Upcoming Schedule

- Assistant Coaches' Review Sessions for Exam 1:
 - Tuesday, 6:30pm, Rice 442
 - Wednesday (today), 7:30pm, Rice 442
- Office Hours this week:
 - **Dave:** (in Rice 507) Monday, 1:15-2pm; Tuesday, 11am-noon; Thursday, 9:45am-11
 - No assistant coaches' office hours on Monday, Tuesday, or Wednesday
 - Thursday: (in Rice Bagel Space): 1-2:30pm (Joseph), 4:30-6pm (Jonathan), 6-7:30pm (Jiamin)
 - No scheduled office hours while exam is out (Friday 7 October Wednesday 12 October)
- Wednesday, 12 October: Exam 1 Due (will be take-home and open book). You will be permitted to use any non-human resources you want for Exam 1, other than using DrRacket (or any other Scheme interpreter). Exam 1 will be handed out on Friday, 7 October. It covers:
 - Problem Sets 1-4 including PS Comments 1-4
 - Course Book Chapters 1-6
 - Classes 1-18 (but not the new material on cost and running time)

Asymptotic Operators

O (**Big-Oh**): *upper bound*. A function *g* is in *O* (*f*) iff there are positive constants *c* and n_0 such that $g(n) \le cf(n)$ for all $n \ge n_0$.

Ω (Omega): *lower bound*. A function *g* is in Ω (*f*) iff there are positive constants *c* and n_0 such that $g(n) \ge cf(n)$ for all $n \ge n_0$.

\Theta (Theta): *tight bound*. A function *g* is in Θ (*f*) iff *g* is in O(f) and *g* is in $\Omega(f)$.

Prove $1/1000 n^2 - 9999n^{1.9} \in \Theta(n^2)$

Prove $\Theta(1/1000 n^2 - 9999n^{1.9}) = \Theta(n^2)$

What is the asymptotic running time of:

(define (bigger a b) (if (> a b) a b))

Implementing > (greater than) using a Turing Machine, unary notation for inputs:

 $1^a > 1^b # \Rightarrow 0#$ if a > b, 1# if $a \le b$

Turing Machine transition rules: (*state, read symbol*) \rightarrow (*next state, write symbol, direction to move*)

Implementing > (greater than) using a Turing Machine, *binary* notation for inputs: