
University of Virginia 19 October 2011

cs1120: Introduction of Computing

Explorations in Language, Logic, and Machines

Class 24: Imperative Programming

Upcoming Schedule

• Office hours:

Today: 5-6:30pm (Jiamin, Rice 1st)

Thursday: 9:45-11am (Dave, Rice 507); 1-2:30pm/4:30-7:30pm (Rice 1st floor)
• Friday, 21 October (beginning of class): Problem Set 5 (see below)

• Reading: if you haven’t already, should soon finish reading the course book through the end of

Chapter 9, and The Information through the end of Chapter 7.

• Wednesday, 26 October: Quiz 3 (covers the course book through Chapter 10, The Information

through the end of Chapter 8, and some other readings, details to be provided later)

Functional Programming: divide a problem into procedures that can be composed to solve

problem. Procedures are connected by passing the results of one procedure as the inputs to the
next procedure. The way the functions are composed determines the order in which expressions

are evaluated.

Imperative Programming: divide a problem into statements (mostly assignments) that can be

done in order to solve a problem. Statements are connected by using shared state.

Very little programming is purely functional or purely imperative, but most is a mix of both. Almost
everything we have done until PS5 was purely functional, but we still needed some state and side-

effects (like printing on the screen).

Places: a place stores a value
Frame: a collection of zero or more places (like a picture frame)

Environment: a frame, and a pointer to a parent environment

Global Environment: the only environment with no parent

define creates a new place in the execution environment’s frame, and stores a value in that place

set! (“set bang”) changes the value associated with a place

Applying a procedure creates a new environment, and creates places in that environment’s frame

named after the parameters, with the argument values.

Mutable Pairs

(mcons a b) creates a new mutable pair

(mcar p) selects the first part of a mutable pair, (mcdr p) selects the second part of a mutable pair

(set-mcar! p v) assigns the value of v to the first part of the mutable pair p

(set-mcdr! p v) assigns the value of v to the second part of the mutable pair p

(define (list-append p q)

 (if (null? p) q

 (cons

 (car p)

 (list-append (cdr p) q))))

What is the running time of list-append?

What is the memory use of list-append?

(define (mlist-append! p q)

 (if (null? p)

 (if (null? (mcdr p))

 (set-mcdr! p q)

 (mlist-append! (mcdr p) q))))

What is the running time of mlist-append!?

What is the memory use of mlist-append!?

Define a procedure make-list that takes as input a number n, and outputs a list of length n.

What is the running time of make-list? Also, state it in terms of the size (not value) of the input.

Aliasing: when two objects share places.

Define a mlist-reverse! that reverses the elements of a mutable list. The output should be a

mutable list with the elements in the reverse order. The number of cons cells it creates should not

scale with the length of the list. (The input list can be mutated arbitrarily!)

