
Class 3:

Rules of

Evaluation

David Evans
cs1120 Fall 2011

Menu

Describing Languages

Questions from Notes

Computing photomosaics, non-recursive languages,

hardest language elements to learn

Scheme: Grammar and Rules of Evaluation

2

Code written by

humans

Compiler/Interpreter

Code machine can run

Compiler translates

from code in a high-

level language to

machine code.

Scheme uses an interpreter. An interpreter is like a

compiler, except it runs quickly and quietly on small

bits of code at a time.

John Backus

Chemistry major at UVA
(entered 1943)

Flunked out after second
semester

Joined IBM as programmer
in 1950

Developed Fortran, first
commercially successful
programming language
and compiler John Backus, 1924 – 2007

IBM 704 Fortran manual, 1956
Describing Languages

Fortran language was described using English

Imprecise

Verbose, lots to read

Ad hoc

DO 10 I=1.10

Assigns 1.10 to the variable DO10I

DO 10 I=1,10

Loops for I = 1 to 10

(Often incorrectly blamed for loss of Mariner-I)

Backus wanted a precise way of describing a language

Backus Naur Form

symbol ::= replacement

We can replace symbol with replacement

nonterminal – symbol that appears on left side of
rule

terminals – symbol that never appears on the left
side of a rule

A ::= B means anywhere you have an A,

you can replace it with a B.

7

Note: this is named for John Backus for being the first person to advocate using it for

describing programming languages, but linguists were using similar techniques much earlier.

Recap: Zero, One, Infinity

word ::= anti-word

word ::= hippopotomonstrosesquipedaliophobia

This rule can make 0 words.

This rule can make 1 word.

word ::= anti-word

word ::= hippopotomonstrosesquipedaliophobia

These two rules can make infinitely many words,

enough to express all ideas in the universe!

8

Simple BNF Grammar

s ::= 0s

s ::= 0

9

Rapid Exponential Growth

10

Question from Class 1: What other things have changed as

much as (or more that!) computing power in your lifetime?

Communication (global IP traffic, PB/month) (Alex)

Energy Consumption (world energy use, TW) (Filip)

Human (number of cells) (Ouamdwipwaw)

Knowledge (Tyson’s measure) (Deirdre Regan)

National Debt (Michael)

TV (number of pixels) (gtc5sn)

Wealth (world GDP) (Chris Smith)

11

http://www.wolframalpha.com/input/?i=india+china+brazil+usa+gdp+1990-2011

12

1991 value 2011 value Growth Doubling time

Energy Consumption (world

energy use, TW) (Filip)

102,300 142,300 (2008) 1.39 38 years

Wealth (world GDP) (Chris

Smith)

$21T $60T (2008) 2.67 12 years

Knowledge (Tyson’s measure)

(Deirdre Regan)

15 years

National Debt (Michael) $3.2T (56%

of GDP)

$14.7T (93% of

GDP)

4.6 9 years

TV (number of pixels) (gtc5sn) 486x243, 3

channels =

354292

1920×1080, 500

channels =

1036800000

2926 1.73 years

Computing Power/Dollar

(Moore’s Law)

18 months

Communication (global IP

traffic, PB/month) (Alex)

0.001 20,197 20M 9.9 months

Human (number of cells)

(Ouamdwipwaw)

1 50 Trillion 50

Trillion

5.3 months

Communication (global IP traffic, PB/month) (Alex)

Energy Consumption (world energy use, TW) (Filip)

Human (number of cells) (Ouamdwipwaw)

Knowledge (Tyson’s measure) (Deirdre Regan)

National Debt (Michael)

TV (number of pixels) (gtc5sn)

Wealth (world GDP) (Chris Smith)

Genome Sequencing

13

1990: Human Genome Project starts, estimate

$3B to sequence one genome ($0.50/base)

Genome Project

2000: Human

Genome Project

declared

complete, cost

~$300M

Whitehead Institute, MIT 14

$10,000

$100,000

$1,000,000

$10,000,000

$100,000,000

S
e

p
 2

0
0

1

Fe
b

 2
0

0
2

Ju
l 2

0
0

2

D
e

c
2

0
0

2

M
a

y
2

0
0

3

O
ct

 2
0

0
3

M
a

r
2

0
0

4

A
u

g
 2

0
0

4

Ja
n

 2
0

0
5

Ju
n

 2
0

0
5

N
o

v
2

0
0

5

A
p

r
2

0
0

6

S
e

p
 2

0
0

6

Fe
b

 2
0

0
7

Ju
l 2

0
0

7

D
e

c
2

0
0

7

M
a

y
2

0
0

8

O
ct

 2
0

0
8

M
a

r
2

0
0

9

A
u

g
 2

0
0

9

Ja
n

 2
0

1
0

Ju
n

 2
0

1
0

Cost to sequence human genome

Moore’s Law prediction

(halve every 18 months)

Data from National Human Genome Research Institute: http://www.genome.gov/sequencingcosts

$10,000

$100,000

$1,000,000

$10,000,000

$100,000,000

S
e

p
 2

0
0

1

Fe
b

 2
0

0
2

Ju
l 2

0
0

2

D
e

c
2

0
0

2

M
a

y
2

0
0

3

O
ct

 2
0

0
3

M
a

r
2

0
0

4

A
u

g
 2

0
0

4

Ja
n

 2
0

0
5

Ju
n

 2
0

0
5

N
o

v
2

0
0

5

A
p

r
2

0
0

6

S
e

p
 2

0
0

6

Fe
b

 2
0

0
7

Ju
l 2

0
0

7

D
e

c
2

0
0

7

M
a

y
2

0
0

8

O
ct

 2
0

0
8

M
a

r
2

0
0

9

A
u

g
 2

0
0

9

Ja
n

 2
0

1
0

Ju
n

 2
0

1
0

15

Cost to sequence human genome

Moore’s Law prediction
(halve every 18 months)

Data from National Human Genome Research Institute: http://www.genome.gov/sequencingcosts

Ion torrent Personal Genome Machine

Human Genome Sequencing Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Radoje

Drmanac, Andrew B. Sparks, Matthew J. Callow, Aaron L. Halpern, Norman L. Burns, Bahram G. Kermani, Paolo

Carnevali, Igor Nazarenko, Geoffrey B. Nilsen, George Yeung, Fredrik Dahl, Andres Fernandez, Bryan Staker,

Krishna P. Pant, Jonathan Baccash, Adam P. Borcherding, Anushka Brownley, Ryan Cedeno, Linsu Chen, Dan

Chernikoff, Alex Cheung, Razvan Chirita, Benjamin Curson, Jessica C. Ebert, Coleen R. Hacker, Robert Hartlage,

Brian Hauser, Steve Huang, Yuan Jiang, Vitali Karpinchyk, Mark Koenig, Calvin Kong, Tom Landers, Catherine Le,

Jia Liu, Celeste E. McBride, Matt Morenzoni, Robert E. Morey, Karl Mutch, Helena Perazich, Kimberly Perry, Brock

A. Peters, Joe Peterson, Charit L. Pethiyagoda, Kaliprasad Pothuraju, Claudia Richter, Abraham M. Rosenbaum,

Shaunak Roy, Jay Shafto, Uladzislau Sharanhovich, Karen W. Shannon, Conrad G. Sheppy, Michel Sun, Joseph V.

Thakuria, Anne Tran, Dylan Vu, Alexander Wait Zaranek, Xiaodi Wu, Snezana Drmanac, Arnold R. Oliphant,

William C. Banyai, Bruce Martin, Dennis G. Ballinger, George M. Church, Clifford A. Reid. Science, January 2010.

George Church (Personal Genome Project)

Doubling time: 38000 in 2 years = 48 days

Rules of

Evaluation

Scheme Grammar
Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression

| ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false

| PrimitiveProcedure

NameExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

IfExpression ::= (if ExpressionPred ExpressionConsequent ExpressionAlt)

18

Assigning Meanings
Program ::= ε | ProgramElement Program

ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression | ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false| PrimitiveProcedure

NameExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions)

MoreExpressions ::= ε | Expression MoreExpressions

ProcedureExpression ::= (lambda (Parameters) Expression)

Parameters ::= ε | Name Parameters

IfExpression ::= (if ExpressionPred ExpressionConsequent ExpressionAlt)

19

This grammar generates (nearly) all surface forms in the Scheme language.

What do we need to do to know the meaning of every Scheme program?

Expressions and Values

When an expression with a value is evaluated, a

value is produced

20

Our goal is to define a meaning function, Eval, that

defines the value of every Scheme expression:

Eval(Expression) ⇒ Value

Today we do this informally with rules in English.

(In PS7 we will do it with a program.)

Expression ::= PrimitiveExpression | NameExpression
| ApplicationExpression
| ProcedureExpression | IfExpression

Primitive Expressions
PrimitiveExpression ::= Number | true | false | PrimitiveProcedure

21

Evaluation Rule 1: Primitives

If the expression is a primitive, it
evaluates to its pre-defined value.

> 2

2

> true

#t

> +

#<primitive:+>

Primitives are the

smallest units of

meaning: they can’t

be broken down

further, you need to

know what they mean.

22

Name Expressions

Expression ::= NameExpression

NameExpression ::= Name

23

Evaluation Rule 2: Names

A name evaluates to the value associated

with that name.

> (define two 2)

> two

2

24

Caveat: this simple rule only works if the value

associated with a name never changes (until PS5).

Application Expressions

Expression ::= Application Expression

ApplicationExpression

::= (Expression MoreExpressions)

MoreExpressions ::= ε

MoreExpressions ::= Expression MoreExpressions

25

Evaluation Rule 3: Application

3. To evaluation an application expression:

a) Evaluate all the subexpressions (in any order)

b) Apply the value of the first subexpression to the

values of all the other subexpressions.

(Expression0 Expression1 Expression2 …)

Rules for Application

1. Primitives. If the procedure to apply is a

primitive procedure, just do it.

2. Constructed Procedures. If the procedure is

a constructed procedure, evaluate the body

of the procedure with each parameter name

bound to the corresponding input

expression value.

27

EvalEval

ApplyApply

Eval and Apply are

defined recursively.

Without Eval, there

would be no Apply,

without Apply

there would be no

Eval!

28

Language Elements

When learning a foreign language,
which elements are hardest to

learn?

29

Charge

We will cover the rest of the rules Wednesday,

then you will know enough to describe every

possible computation!

Reading: should be finished with Chapter 3 now,

Chapter 4, Gleick Ch 1-3 by Friday

PS1 is Due Monday: Find your assigned partner

Get started earlier and take advantage of

scheduled help hours

30

