Class 3:
Rules of
Evaluation

David Evans
cs1120 Fall 2011

Menu

Describing Languages
Questions from Notes

Computing photomosaics, non-recursive languages,
hardest language elements to learn

Scheme: Grammar and Rules of Evaluation

Code written by
humans
Compiler translates

from code in a high-
level language to

1]

Compiler/Interpreter

l machine code.

Code machine can run

Scheme uses an interpreter. An interpreter is like a
compiler, except it runs quickly and quietly on small
bits of code at a time.

John Backus

Chemistry major at UVA
(entered 1943)

Flunked out after second
semester

Joined IBM as programmer
in 1950

Developed Fortran, first
commercially successful
programming language
and compiler

John Backus, 1924 — 2007

IBM 704 Fortran manual, 1956

STATEMENT NORMAL SEQUENCING
a.=.b Next executable statement
GO TO n Statement n =
GO TO n, (ny,ny,...,Nm) "~ Statement last assigned s
ASSIGN i TO n Next executable statement
GO TO (ny,ny...,Np), 0 Statement n;

IF (a) ny,ng,ng Statement ny,ing,n; as a Ig
SENSE LIGHT i Next executable stateme

IF (SENS;E LIGHT i) ny,n, Sta?ement ny,n, as Sense| FOI‘tI‘a.n
IF (SENSE SWITCH i) ny,n; i tutisas Sens_e

Describing Languages

Fortran language was described using English
Imprecise
Verbose, lots to read
Ad hoc
DO 10 I=1.10
Assigns 1 .10 to the variable DO10T
DO 10 I=1,10
LoopsforT = 1to10
(Often incorrectly blamed for loss of Mariner-I)

Backus wanted a precise way of describing a language

Backus Naur Form

symbol ::= replacement
We can replace symbol with replacement

A ::= B means anywhere you have an A,
you can replace it with a B.

nonterminal — symbol that appears on left side of

rule
terminals — symbol that never appears on the left
side of a rule

Note: this is named for John Backus for being the first person to advocate using it for
describing programming languages, but linguists were using similar techniques much earlier.

Recap: Zero, One, Infinity

Word = anti-Word This rule can make 0 words.

word ::= hippopotomonstrosesquipedaliophobia

This rule can make 1 word.

word ::= anti-word
word ::= hippopotomonstrosesquipedaliophobia

These two rules can make infinitely many words,
enough to express all ideas in the universe!

Simple BNF Grammar

s::=0s 5—>O ss Oi

$>0s¢s *é
#

s= ()
,00¢
S=200p

Rapid Exponential Growth

Question from Class 1: What other things have changed as
much as (or more that!) computing power in your lifetime?

Communication (global IP traffic, PB/month) (Alex)
Energy Consumption (world energy use, TW) (Filip)
Human (number of cells) (Ouamdwipwaw)
Knowledge (Tyson’s measure) (Deirdre Regan)
National Debt (Michael)

TV (number of pixels) (gtc5sn)

Wealth (world GDP) (Chris Smith)

15000 e
12 500 y, — Indiz
10000 /‘/ — China
THO00
- / — Brazil
S000 e
2500 L —_)'// — United States
LS =
1970 1880 1980 2000
(from 1961 to 2009) (in billions of US dollars per year)

http://www.wolframalpha.com/input/?i=india+china+brazil+usa+gdp+1990-2011

[[1991value [2011value [Growth | Doublingtime

38 years
Communication (global IP traffic, PB/month) (Alex)
12 years
Energy Consumption (world energy use, TW) (Filip)
Human (number of cells) (Ouamdwipwaw) 15 years
Knowledge (Tyson’s measure) (Deirdre Regan)
National Debt (Michael) 9 years
TV (number of pixels) (gtc5sn)
. . 1.73 years
Wealth (world GDP) (Chris Smith)
Computing Power/Dollar 18 months
(Moore’s Law)
9.9 months

5.3 months

Genome Sequencing

1990: Human Genome Project starts, estimate
$3B to sequence one genome ($0.50/base)

2000: Human
Genome Project
declared
complete, cost
~$300M

$100,000,000

Moore’s Law prediction

$10,000,000 (halve every 18 months)

$1,000,000
$100,000

$10,000 — T — — — —

N NN S SN N OO NN DN O O O

© Q9 9 9 9 9 99 9 QO Q Q9 9 9 90 9O 9 Q9 dd

©O O O O O 0O O O O O O O O O O O O O O © O o

N N NN NN NN NN NN NN AN AN N NN N NN

= o = = o Py = o P
S 8 3 o 8 58 %5535 ¢ 3 EXI) 8 58 ¥5 S
[A0~ 5z2<9ouw asOos x-S

Data from National Human Genome Research Institute: http://www.genome.gov/sequencingcosts

$100,000,000 4
Moore’s Law prediction
halve every 18 months
$10,000,000 (i/)
$1,000,000 -
$100,000
$10,000 Ion torrent Personal Genome Machine i
o NN MmN S SN NN WO NN N X DD O O
O O O O © O O © O O O O O O O O O © O O «d o
O o O
N N N NN AN NN N NN NN NN AN NN AN N NN
a o = o > B = o o =4 > = a o 5 = > 8= o o =4
$223832c22232832288c22z2¢%3

Data from National Human Genome Research Institute: http://www.genome.gov/sequencingcosts

Doubling time: 38000 in 2 years = 48 days

Reported Estimated
sequencing cost per
consumables 40-fold
cost coverage

$10,000,000 | $57,000,000
$1,000,000 | $5,700,000

$250,000 $330,000

$48,000 $69,000

$8,005 $3,700

2009 $3,451 $2,200
$1,726 $1,500

DNA Nanoarrays. Radoje

. Burns, Bahram G. Kermani, Paolo
Carnevali, Igo ndres Fernandez, Bryan Staker,
Krishna P. Pa Ryan Cedeno, Linsu Chen, Dan
Chernikoff, Ale)l—r, Coleen R. Hacker, Robert Hartlage,
Brian Hauser, S Ivin Kong, Tom Landers, Catherine Le,
Jia Liu, Celeste E. McBride, Matt Morenzoni, Robert E. Morey, Karl Mutch, Helena Perazich, Kimberly Perry, Brock
A. Peters, Joe Peterson, Charit L. Pethiyagoda, Kaliprasad Pothuraju, Claudia Richter, Abraham M. Rosenbaum,
Shaunak Roy, Jay Shafto, Uladzislau Sharanhovich, Karen W. Shannon, Conrad G. Sheppy, Michel Sun, Joseph V.
Thakuria, Anne Tran, Dylan Vu, Alexander Wait Zaranek, Xiaodi Wu, Snezana Drmanac, Arnold R. Oliphant,
William C. Banyai, Bruce Martin, Dennis G. Ballinger, George M. Church, Clifford A. Reid. Science, January 2010.

Evaluation

Scheme Grammar

Program ::=¢ | ProgramElement Program
ProgramElement ::= Expression | Definition

Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression

| ApplicationExpression

| ProcedureExpression | IfExpression
PrimitiveExpression ::= Number | true | false

| PrimitiveProcedure

NameExpression ::= Name
ApplicationExpression ::= (Expression MoreExpressions)
MoreExpressions ::= € | Expression MoreExpressions
ProcedureExpression ::= (lambda (Parameters) Expression)
Parameters ::=¢ | Name Parameters
IfExpression ::= (if Expression;, .4 EXpressioncynsequent EXPression,y)

Assigning Meanings

Program ::=g | ProgramElement Program
ProgramElement ::= Expression | Definition
Definition ::= (define Name Expression)

Expression ::= PrimitiveExpression | NameExpression
| ApplicationExpression | ProcedureExpression | IfExpression

PrimitiveExpression ::= Number | true | false| PrimitiveProcedure

NamekExpression ::= Name

ApplicationExpression ::= (Expression MoreExpressions) ME = % P’\E
MoreExpressions : @ xpression MoreExpressions N\g > 6
ProcedureExpressioh== (lambda (Parameters) Expression)

Parameters ::=¢ | Name Parameters

IfExpression ::= (if EXpressionpeq EXpressionconsequent EXPression)

This grammar generates (nearly) all surface forms in the Scheme language.
What do we need to do to know the meaning of every Scheme program?

Expressions and Values

Expression ::= PrimitiveExpression | NameExpression
| ApplicationExpression
| ProcedureExpression | IfExpression

When an expression with a value is evaluated, a
value is produced

Eval

Eval Value

20

Primitive Expressions

PrimitiveExpression ::= Number | true | false | PrimitiveProcedure

21

Evaluation Rule 1: Primitives

If the expression is a primitive, it
evaluates to its pre-defined value.

>2 Primitives are the

2 smallest units of

> true meaning: they can’t
#H be broken down

>+ further, you need to
#<primitive:+> know what they mean.

22

Name Expressions

Expression ::= NameExpression
NamekExpression ::= Name

23

Evaluation Rule 2: Names

A name evaluates to the value associated
with that name.

> (define two 2)
> two

Caveat: this simple rule only works if the value
associated with a name never changes (until PS5).

24

$205|0
Application ExpressionsM

Expression ::= Application Expression (-})
ApplicationExpression

::= (Expression MoreExpressions)
MoreExpressio‘ns n=E€)
MoreExpressions ::= Expression MoreExpressions

Abtpr = (4 23) (4 2 3)

L%v & Exee !‘Aar@/)/—’;gﬁ{ nge ﬁ;)fﬁ,z%
€

Uitnebpr D pimbic 2t D 3}

Evaluation Rule 3: Application

3. To evaluation an application expression:
a) Evaluate all the subexpressions (in any order)

b) Apply the value of the first subexpression to the
values of all the other subexpressions.

(Expression, Expression, Expression, ...)

Rules for Application

1. Primitives. If the procedure to apply is a
primitive procedure, just do it.

2. Constructed Procedures. If the procedure is
a constructed procedure, evaluate the body
of the procedure with each parameter name
bound to the corresponding input
expression value.

Eval and Apply are
defined recursively.

Without Eval, there
would be no Apply,
without Apply
there would be no
Eval!

Language Elements

When learning a foreign language,
which elements are hardest to
learn?

Charge

We will cover the rest of the rules Wednesday,
then you will know enough to describe every
possible computation!

Reading: should be finished with Chapter 3 now,
Chapter 4, Gleick Ch 1-3 by Friday
PS1 is Due Monday: Find your assigned partner

Get started earlier and take advantage of
scheduled help hours

