University of Virginia cs1120: Introduction of Computing **Explorations in Language, Logic, and Machines**

Quiz 1

Your name:			Your UVa ID:				
Ho ow	nor policy: For thi n brain and body, t	s quiz, you must woi he pencil or pen you	rk alone, and may not us use to write your answe	es any resources other than your ers, and this sheet of paper.			
1.	Chapter 1 of Gleick's <i>The Information</i> is about communicating over long distances using (circle one answer):						
	Drums	Optical fibers	Smoke signals	Vuvuzelas			
2.	As described in Chapter 2 of <i>The Information</i> , Donald Knuth found an Old Babylonian tablet that described a:						
	Data structure	Procedure	Tax code	Writing system			
3.	As described in Chapter 3 of <i>The Information</i> , Cawdrey's book of English words published in 1604 was organized:						
	Alphabetically	By Meaning	Phonetically	By Word Type			
4.	What kind of expr (make-rotund	ession is Jasaic "mosaic.htm	l" closer-color?)				

?

- Application Expression Primitive Expression Procedure Expression
- 5. What does (if (> 3 4) (* + +) 7) evaluate to? _____
- 6. According to Chapter 4 of the course book, the first step in the general recursive problem solving strategy is (check one):
 - ____ Be happy! At least it doesn't involve calculus.
 - ____ Be optimistic! Assume you can solve it.
 - ____ Be positive! All problems can be solved recursively.
 - ____ Be resourceful! Use DuckDuckGo to see if anyone has already solved the problem.
 - ____ Be scared! Recursive definitions are hard.

This is the end of the graded part of the quiz. If you have more time, go on to the **ungraded** questions on the back. 7. (ungraded) How is the pace of the class so far?

Too slow	A little too slow	A little too fast	Too fast	Way too fast
----------	-------------------	-------------------	----------	--------------

- 8. (ungraded) How many of the exercises in the book have you done?
 - ____ Many of them, and I read the solutions after to check my answers.
 - _____ Many of them, but I didn't look at the solutions.
 - _____ At least a few of them, and I have also read the solutions.
 - _____ At least a few of them, but I didn't know there are solutions available.
 - ____ None.
- 9. Do you prefer to have more standard lectures, or more classes like last Friday where we work in small groups on problems?
 - ___ Prefer Only Lectures
 - ____ Prefer Mostly Lectures (3 Lectures most weeks and occasional group work)
 - ___ Prefer Mix of 2 Lectures and Group Work once a Week
 - ___ Prefer Mostly Group Work (1 Lecture, Group Work twice a week)
 - ___ Prefer Only Group Work
- 10. Any other comments about the class so far?

- 11. (ungraded) What is a *List*?
- 12. (ungraded) Define a procedure, is-list?, that takes as input any value and evaluates to true if the input value is a List, and false otherwise. For example, (is-list? 37), (is-list? (cons 1 2)) and (is-list? (cons 1 (cons 2 3))) should all evaluate to false, and (is-list? null) and (is-list? (cons 1 (cons 2 null))) should both evaluate to true. You may use the built-in procedures null? (which takes one input and outputs true if that input is null and false otherwise), and pair? (which takes one input and outputs true if that input is a Pair, and false otherwise).