
University of Virginia Out: 9 October 2011

cs1120: Introduction of Computing Due: 11:01 am, Wednesday, 14 October

Explorations in Language, Logic, and Machines

Exam 1

Directions
Due: 11:01am, Wednesday, 14 October 2011. No late exams will be accepted without prior
arrangement or an extraordinarily good story (that should involve either a hospital or a jail cell).

Work alone. Between receiving this exam and turning it in at class Wednesday, you may not

discuss these problems or anything related to this exam with anyone other than the course staff.

Open resources. You may use any books you want, lecture notes, slides, your notes, and problem
sets, including any materials posted on or linked from the course website. You may not use

DrRacket, or any other Scheme interpreter. You may also use external non-human sources

including books and web sites. If you use anything other than the course book, slides, and notes,

you must cite what you used clearly in your answer. You may not obtain any help from other

humans other than the course staff (who will only answer clarification questions).

Answer well. Answer all of the graded questions and the optional, ungraded questions on the last

page. A “full credit” answer for each question is worth 10 points (but it is possible to get more than

10 points for especially elegant and insightful answers). The exam has more than 100 possible

points, but a score of 100 is considered a “maximum” score on this exam.

Your answers must be clear enough for us to read and understand. If you do not use our provided

print-out, your print-out should use only the front sides of pages and should be printed well enough
to be easily read.

You should not need more space than is provided to write good answers, but if you need more you

may use the backs or attach extra sheets. If you do, make sure the answers are clearly marked.

The questions are not necessarily in order of increasing difficulty. There is no time limit on

this exam, but it should not take a well-prepared student more than two hours to complete. It may

take you longer, though, so please do not delay starting the exam.

Full credit depends on the clarity and elegance of your answer, not just correctness. Your
answers should be as short and simple as possible, but not simpler. Your answers will be judged for

correctness, clarity and elegance, but you will not lose points for trivial errors (such as missing a

closing parenthesis).

Name: ______________________________ UVa Email ID: __ __ __ __ __ __

Pledge: __

Sign here to indicate that you read, agreed to, and followed all of the

directions here in addition to the Course Pledge.

Language

1. (a) Give a BNF grammar that produces the language of DNA sequences. Your grammar

should produce all strings of zero or more nucleotides, where the nucleotides are

represented by elements from the set { A, C, G, T }, and no other strings.

(b) Give a BNF grammar that produces the language of DNA sequences that contain one

or more full codons. Each codon is a sequence of three nucleotides. For example, your

language should contain “ACCGACTAA” but should not contain “ACGA” or “” (the empty

string).

2. For each item below, check the one answer that best characterizes the entire Scheme

fragment shown. (Note: this is not asking you about what it evaluates to!)

a. (+ 0)

___ Application Expression

___ Primitive Expression

___ Procedure Expression

___ Special Form

b. ((lambda (v) v) 3)

___ Application Expression

___ Primitive Expression

___ Procedure Expression

___ Special Form

c. (lambda (v) +)

___ Application Expression

___ Primitive Expression

___ Procedure Expression

___ Special Form

d. (if true false true)

___ Application Expression

___ Primitive Expression

___ Procedure Expression

___ Special Form

e. ((if true (lambda (a) false) (lambda (b) true)) 3)

___ Application Expression

___ Primitive Expression

___ Procedure Expression

___ Special Form

Procedures

3. Define a procedure, any-matches, that takes as input three numbers and outputs true if

any two of the numbers are equal, and outputs false otherwise. For example,

(any-matches 3 7 3) should evaluate to true

(any-matches 3 4 5) should evaluate to false

(any-matches 7 3 7) should evaluate to true

4. Define a procedure, is-composite?, that takes as input a natural number, and outputs

true if that number is composite, and outputs false otherwise. A natural number, n, is

composite if it is divisible by some number that is greater than 1 and less than n. You

do not need to worry about efficiency in your solution – a simple, slow, and correct

procedure is worth full credit.

You may use the is-divisible? procedure defined below in your is-composite? definition.

The is-divisible? procedure takes two inputs, and evaluates to true if the first input is

divisible by the second input, and false otherwise.

 (define (is-divisible? v d) (= (modulo v d) 0))

5. Define a procedure, all-positive?, that takes as input a list. The output should be true if the all

the elements in the input list are positive; otherwise, the output should be false. For example,

(all-positive? (list 2 4 6 8)) should evaluate to true

 (all-positive? (list 2 0)) should evaluate to false

 (all-positive? null)) should evaluate to true

6. Define a procedure, is-pure?, that takes as input a list and a test procedure. The output should

be true if the result of applying the test procedure to each element in the list is true; otherwise

the output should be false. For example,

(is-pure? even? (list 2 4 6 8)) should evaluate to true

 (is-pure? even? (list 2 4 6 8 9)) should evaluate to false

 (is-pure? (lambda (v) false) null)) should evaluate to true

7. Define a procedure, factors, that takes as input a number and outputs a list containing all the

non-trivial factors of that number. A natural number b is a factor of a if a is divisible by b. The

trivial factors (1 and the input number) should not be included. You may use the is-divisible?

procedure from question 4 in your definition. For example,

(factors 6) should evaluate to the list (2 3)

(factors 7) should evaluate to the empty list

(factors 1120) should evaluate to the list

 (2 4 5 7 8 10 14 16 20 28 32 35 40 56 70 80 112 140 160 224 280 560)

Hint: define a factors-helper procedure and use it do define factors as:

(define (factors n)

 (list-reverse (factors-helper (- n 1) n)))

(If you use this, it is only necessary to show the definition of factors-helper.)

8. Lefty O’Doul proposes replacing the standard List structure, with a new structure he calls a Tsil

(the t is silent, of course) defined as:

 A Tsil is either (1) llun or (2) a Pair whose first cell is a Tsil.

where llun is a new special built-in value (analogous to null), and the built-in procedure llun?

(analogous to null?) that takes one value as input and outputs true if that value is llun, and

false otherwise.

Define a procedure, tsil-map, analogous to list-map, that takes as input a procedure and a Tsil,

and produces as output a Tsil that contains as elements the result of applying the input
procedure to each element of the input Tsil in the same order.

Machines

9. Design a Turing Machine that takes as input a tape in the form a=b# where a and b are

sequences of zero or more symbols where each symbol is either 0 or 1. The output should be

#1 (this can be anywhere on the tape, but there should be exactly one # on the output tape) if a

and b are exact matches, and #0 otherwise. Your answer should first describe in English (or

Schemish) a high-level description of how your machine works. Then, you should provide a

precise description of your machine, either as a complete list of transition rules or as a diagram.

Tandem Repeats

A tandem repeat in a genome is a sequence of nucleotides that repeats two or more times
consecutively. Tandem repeats are common throughout the genome, and have many important

uses including genetic fingerprinting (this is what is used in DNA tests to identify criminals, since

the number of repetitions for certain sequences is highly variable across humans and easy to

detect) and diagnosing diseases (for example, in a normal FMR-1 gene the sequence CGG repeats 6-
54 times consecutively, but repeats over 200 times in patients with a form of autism). In questions

10 and 11, you will define procedures for counting tandem repeats.

10. Define a procedure, contains-matching-prefix, that takes as input two lists, p and s. The output

should be true if the sequence of elements at the beginning of p exactly matches the complete

sequence of elements in s. Otherwise, the output should be false.

For example,

 (contains-matching-prefix (list 1 2 3 4) (list 1)) should evaluate to true

 (contains-matching-prefix (list 1 2 3 4) (list 1 2 4)) should evaluate to false

 (contains-matching-prefix (list 1 2) (list 1 2)) should evaluate to true

 (contains-matching-prefix (list 1 2) (list 1 2 3)) should evaluate to false

 (contains-matching-prefix (list 1 2) null) should evaluate to true

11. Define a procedure, count-tandem-repeats, that takes as input a list, p, and a number, n. The

output should be the total number of times the first n elements of p are consecutively repeated
at the beginning of p. Repetitions may not overlap.

For example,

 (count-tandem-repeats (list 1 2 1 2 1 3) 2) should evaluate to 2

 (count-tandem-repeats (list 2 2 2 2 2 2) 2) should evaluate to 3

 (count-tandem-repeats (list 1 2 3 1 2 1 2 3) 3) should evaluate to 1 [corrected]

You should feel free to define any helper procedures you think are useful, as well as to use any

procedures defined in the course book or problem sets.

The questions on this page are ungraded. I do most appreciate your honest and thoughtful

answers to them, though. Feel free to use additional space on the back if you wish.

12. Do you feel your performance on this exam will fairly reflect your understanding of the course

material so far? If not, explain why.

13. How long did it take you to complete this exam?

14. What topics to you hope to see in the remainder of the course?

15. Do you trust your classmates to follow the honor expectations in this class? (Feel free to write

comments instead or in addition to checking one or more of the options.)

___ Yes, I trust them completely.

___ I worry that there may be a few transgressions, but I believe the vast majority of the class is

honorable and it is fair and beneficial to rely on this.

___ I think this class places too high a burden on students’ honor, and there are enough

dishonorable students that it is unfair on the honorable students.

___ I have reason to suspect that other students violated the honor policy on problem sets.

___ I have direct knowledge of other students violating the honor policy on problem sets.

___ I have reason to suspect that other students violated the honor policy on this exam.

___ I have direct knowledge of other students violating the honor policy on this exam.

Problem Score Notes

1

2

3

4

5

6

7

8

9

10

11

Total

