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Explorations in Language, Logic, and Machines 

 
 

Exam 2 - Solutions 
 

First Question 

 

1. [Average: 10.0/10] According to Dean Kamen’s speech at the Rice Hall dedication 

(quoting Walt Havenstein), what is “the only sport I know where everyone can turn 

pro”?   

 

(Note: if you had the misfortune of not being able to attend Dean’s talk, you should still 

be able to answer this question by searching for the quote using DuckDuckGo, Google, 

or Bing.) 

 

The FIRST robotics competition (see http://www.usfirst.org/).   More general answers about 

science and technology were also accepted. 

 

Running Time Analysis 

2. [Average: 9.2/10] Describe the worst-case asymptotic running time of the all-positive? 

Scheme procedure defined below (from the Exam 1 comments).  You may assume that 

all elements of p have values below some bound k, so the running time of > is constant.  

Remember to clearly define all variables you use in your answer. 

 

         (define (all-positive? p) 

            (if (null? p) 

                true ; reached end without finding non-positive, so result is true 

                (if (> (car p) 0) 

                    (all-positive? (cdr p)) ; keep looking 

                    false))) ; found one non-positive 

 

The running time of all-positive? is in Θ(N) where N is the number of elements in p.  There are 

N recursive calls to all-positive?, since each call cdr’s down the list.  The work for each 

application of all-positive? is (at worst) applications of null?, >, car, and cdr.  The running time 

for null?, car, and cdr is always constant.  As stated in the question, we can also assume the 

running time for > is constant since the maximum value of the input is bounded and does not 

scale with N.  Hence, the total running time for each application of all-positive? is constant, and 

the total running time for N applications is in Θ(N). 

 

3. [Average: 8.7/10; this was easier than 2, but many people were not confident enough to 

give the same answer twice!] Describe the worst-case asymptotic running time of the 

allPositive Python procedure defined below (that behaves similarly to the Scheme 

procedure above).  You may assume that all elements of p have values below some 

bound k, so the running time of <= is constant.  Remember to clearly define all variables 

you use in your answer. 



 

 

 

def allPositive(p):  

   for x in p: 

       if x <= 0: return False 

   return True 

 

The running time of allPositive is in Θ(N) where N is the number of elements in p.  The for loop 

goes through the elements of p, so there will be N iterations of the loop body.  The loop body 

runs in constant time since we assume the running time of the <= comparison is constant. 

 

4. [Average: 8.4/10] Describe the worst-case asymptotic running time of the 

goldStarsSquare(g) Python procedure defined below.  The input, g, is a natural number.  

You should state clearly all assumptions you make.  Remember to clearly define all 

variables you use in your answer.  The best answers will be in terms of the size of the 

input, not the value of g, but you will receive nearly full credit for a correct answer in 

terms of the value of g. 

 

def rowGoldStars(g): 

    for i in range(0, g): 

        print "*", 

    print # (end the row by printing a new line) 

     

def goldStarsSquare(g): 

    for i in range(0, g): 

        rowGoldStars(g) 

         

The running time of goldStarsSquare is in Θ(V
2
) where V is the magnitude (value) of g, 

assuming the running time of print is linear in the length of what is printed (or that the running 

time of print is constant, since in this case, each print application has the same input length). 

 

The rowGoldStars procedure is a for loop that iterates from 0 to g-1.  The running time of the 

loop body is constant, so the running time of rowGoldStars is in Θ(G) where G is the value of 

the input to rowGoldStars. 

 

The goldStarsSquare procedure is a for loop that iterates from 0 to g-1.  The loop body calls 

rowGoldStars(g), which as analyzed above has running time in Θ(G) where G is the value of the 

input to rowGoldStars.  In this case, the value of the input is the input g to goldStarsSquare, 

which we defined as V, so the running time is in Θ(V).  The number of iterations of the loop 

body is the value of g (= V), so the total running time is in V × Θ(V) = Θ(V
2
). 

For an answer in terms of the size of the input, rather than its value when interpreted as a 

number, we need to consider the largest number that can be written down using N input 

squares.  With binary notation, this is 2
N
-1.  (With more input symbols, it could be larger, like 



 

 

10
N
-1 for decimal, but within the asymptotic operators this doesn’t make a difference.)  So, in 

terms of the input size N, the running time is in Θ((2
N
)

2
).  We can simplify this further since 

(a
m

)
n
 = a

mn
, so it simplifies to Θ(2

2N
), which within the asymptotic operator can be written 

equivalently as Θ(2
N
). 

 

Mutation 

 

5. [Average: 8.6/10] Define a procedure that takes as input a mutable list of numbers, and 

modifies the list so that each element is replaced with its negation.  You may use either 

Scheme or Python to define your procedure (your choice).  For example, in Scheme you 

would define the mlist-negate! procedure that behaves like this: 

 

> (define p (mlist 1 -2 3 0 -17)) 

> (mlist-negate! p) 

> p 

 {-1 2 -3 0 17} 

 

In Python you would define the listNegate procedure that behaves like this: 

 

>>> p = [1, -2, 3, 0, -17]] 

>>> listNegate(p) 

>>> p 

 [-1, 2, -3, 0, 17] 

 

In Scheme: 

  

 (define (mlist-negate! p) (mmap - p)) 

 

(to get exactly the behavior shown, we should do: 

 

 (define (mlist-negate! p) (begin (mmap - p) (void)) 

 

since mmap returns the value of the modified list. 

 

Without using mmap: 

 (define (mlist-negate! p) 

                  (if (null? p)  

                       (void) 

                       (begin  

                            (set-mcar! p (- (mcar p))) 

                            (mlist-negate! (mcdr p))))) 

 

In Python: 



 

 

 def listNegate(p):  

                  map(lambda x: -x, p)            

or: 

 def listNegate(p): 

                 for i in range(0, len(p)): 

                    p[i] = -p[i] 

 

6. [Average: 7.3/10] Define a Scheme procedure make-cumulative! that takes as input a 

mutable list, and modifies the list so that each element is the cumulative total of all 

elements up to and including itself.  For example, 

 

> (define p (mlist 1 2 3 4 5)) 

> (make-cumulative! p) 

> p 

{1 3 6 10 15} 

 

Hint: you probably should start by defining a helper procedure.  (For full credit for this 

question, you must use Scheme.  But, a correct answer using Python is worth most of 

the credit.) 

 

This one is fairly tricky to do in a functional-style (of course it can’t be purely functional since it 

is using mutation, but in the Scheme-style of programming) since you have to unravel the list in 

the right order. 

 

(define (make-cumulative-helper! p tot) 

  (if (null? p) 

      (void) 

      (begin 

        (make-cumulative-helper! (mcdr p) (+ (mcar p) tot)) 

        (set-mcar! p (+ (mcar p) tot))))) 

       

(define (make-cumulative! p) 

  (make-cumulative-helper! p 0)) 

 

(Note that my original solution for this was wrong!  I had the order of the statements in the 

begin expression swapped, so the value of (mcar p) used to pass in the new total was the wrong 

value, after updating it with the cumulative total.  I foolishly pasted the results into the exam 

without actually looking that they were correct.  Sorry for the confusion on this...but another 

example of why programming with mutation gets more complicated.) 

 

Another way to do this in Scheme, but with a more imperative style of programming, is to keep 

the running total in a variable.  The risk here is that you need to make sure the variable is 

initialized correctly for each application. 

 



 

 

 

(define running-total 0) 

 

(define (make-cumulative! p) 

  (if (null? p) 

      (set! running-total 0) ; get ready for next application 

      (begin 

        (set! running-total (+ running-total (mcar p))) 

        (set-mcar! p running-total) 

        (make-cumulative! (mcdr p))))) 

 

This style is more natural in Python: 

 

def makeCumulative(p): 

    total = 0 

    for i in range(0, len(p)): 

       total = total + p[i] 

       p[i] = total 

 

Interpreters 

 

Suppose we want to add a new special form to Charme similar to the and special form in 

Scheme.  The grammar for the and special form is: 

 

Expression   →  AndExpression 

AndExpression → (and ExpressionList) 

ExpressionList  → ε  

ExpressionList  → Expression ExpressionList 

 

The evaluation rule is: 

 

To evaluate the and expression, (and E0 E1 … En), evaluate each sub-expression in 

order until one evaluates to a false value.  If any sub-expression evaluates to a false 

value, the value of the and expression is false, and none of the following sub-

expression is evaluated.  If none of the sub-expressions evaluate to a false value, the 

value of the and expression is true.  (Note that this means (and) should evaluate to 

true.) 

 

7. [Average: 8.1/10] Explain why and needs to be a special form (that is, it requires 

modifying the Charme evaluator and could not be implemented as a primitive 

procedure). 

 

The and expression must be a special form in Charme since it does not evaluate all its 

subexpressions the way a normal application does.  The first operand subexpression must be 



 

 

evaluated first, and then the next operand is only evaluated if the previous ones evaluated to 

true values.  There is no way to define a procedure that behaves this way, since the evaluation 

rule for application is to first evaluate all the subexpressions. 

 

8. [Average: 7.1/10] Define an evalAnd(expr, env) procedure that implements the 

evaluation rule for the and special form.  You may assume the value passed in as expr is 

parsed Charme expression and that corresponds to a syntactically valid and expression.   

 

(Note that the original question didn’t include the env parameter, which is necessary to have an 

evaluation environment.) 

 

def evalAnd(expr, env): 

    for clause in expr: 

        if not meval(clause, env): 

            return False 

    return True 

 

Computability 

 

The cs1120 staff is getting tired of having to grade so many programming questions, so 

wants to build a procedure that automates grading by checking if a solution submitted 

implements the same function as our reference solution. 

 

9. [Average: 6.7/10] Is the CORRECT-ANSWER problem defined below computable?  For full 

credit, your answer must include a convincing proof supporting your answer.   

 

Input: Strings that define two Python procedures, r (the reference procedure) and s 

(the submitted procedure). 

 

Output: True if the procedure defined by s correctly implements the same function 

as the procedure defined by r.  We say s correctly implements the same function as r 

if for every input for which r produces a value, s produces the same value. 

 

The CORRECT-ANSWER problem is not computable.   

 

To prove that it is not computable, we show how an algorithm that solves CORRECT-ANSWER 

could be used to create an algorithm that solves the HALTING-PROBLEM, which we know is 

impossible.  Assume correctAnswer(r, s) is an algorithm that solves CORRECT-ANSWER.  Define 

halts(p), an algorithm that solves the HALTING-PROBLEM as: 

 

 def halts(p): 

     correctAnswer('def r(x): return 37', 'def s(x): eval(' + p + '); return 37') 

 



 

 

The reference procedure, passed in as the first input, is a procedure that always produces 37 as 

its output no matter what the input is.  The submitted procedure is a procedure that first 

evaluates p, the input to halts, and then returns 37.  If p does not halt, this will not produce a 

value, and correctAnswer will output False, which the correct result for halts(p).  If p does halt, 

s(x) will return 37 for all inputs x, so correctAnswer will output True, which is the correct result 

for halts(p).  Hence, an algorithm that solves CORRECT-ANSWER would allow us to create an 

algorithm that solves the HALTING-PROBLEM, so such an algorithm must not exist and 

CORRECT-ANSWER must not be computable. 

 

10. [Average: 7.0/10] Is the PROBABLY-CORRECT-ANSWER problem defined below computable?  

For full credit, your answer must include a convincing proof supporting your answer.   

 

Input: Strings that define two Python procedures, r (the reference procedure) and s 

(the submitted procedure), a set V of test inputs, and a number t for the maximum 

number of steps. 

 

Output: True if the procedure defined by s probably implements the same function 

as the procedure defined by r.  We say s probably implements the same function as r 

if for each element v of V, if r(v) produces a value within t steps, s(v) produces the 

same value within t or fewer steps. 

 

Yes, PROBABLY-CORRECT-ANSWER is computable.  Indeed, you have been using an algorithm 

that solves it since September - this is what the Alonzo-bot service does when you submit code 

for automated testing!    

 

The way to implement PROBABLY-CORRECT-ANSWER is to simulate s(v) for up to t steps (or in 

the Alonzo-bot server’s cause, for some maximum running time).  If it has not finished by t 

steps, it is considered wrong (even if it would have produced a correct answer in t+1 steps).   

 


