
University of Virginia Out: 28 November 2011

cs1120: Introduction of Computing Due: 11:01 am, Wednesday, 30 November

Explorations in Language, Logic, and Machines

Exam 2

Directions
Due: 11:01am, Wednesday, 30 November 2011. No late exams will be accepted without prior

arrangement or an extraordinarily good story. Since you have 10 days for this exam, the threshold

for a good story is significantly higher than it was for Exam 1.

Work alone. Between receiving this exam and turning it in on 30 November, you may not discuss

these problems or anything directly related to this exam with anyone other than the course

staff. You may (and probably should), however, continue to work on Problem Set 8, but must
avoid discussing anything directly related to this exam with your PS8 teammates.

Open resources. You may use any books you want, lecture notes, slides, your notes, and problem
sets, including any materials posted on or linked from the course website. Unlike Exam 1, on this

exam you may also use any computer programs you want, including DrRacket, Python, and code

from the problem sets including PS7. You may also use external non-human sources including
books and web sites. If you use anything other than the course book, slides, notes, and standard

interpreters, you must cite what you used clearly in your answer. You may not obtain any help

from other humans other than the course staff (who will only answer clarification questions).

Answer well. Answer all of the graded questions and the optional, ungraded questions on the last

page. A “full credit” answer for each question is worth 10 points (but it is possible to get more than
10 points for especially elegant and insightful answers). Your answers must be clear enough for us

to read and understand. If you do not use our provided print-out, your print-out should use only

the front sides of pages and should be printed well enough to be easily read. You should not need

more space than is provided to write good answers, but if you need more you may use the backs or
attach extra sheets. If you do, make sure the answers are clearly marked.

The questions are not necessarily in order of increasing difficulty. There is no time limit on

this exam, but it should not take a well-prepared student more than two hours to complete. It may
take you longer, though, so please do not delay starting the exam. You should definitely not allow

this exam to interfere with your Thanksgiving holiday.

Full credit depends on the clarity and elegance of your answer, not just correctness. Your
answers should be as short and simple as possible, but not simpler. Your answers will be judged for

correctness, clarity and elegance, but you will not lose points for trivial errors (such as missing a

closing parenthesis).

Name: ______________________________ UVa Email ID: __ __ __ __ __ __

Pledge: __

Sign here to indicate that you read, agreed to, and followed all of the

directions here in addition to the Course Pledge.

First Question

1. According to Dean Kamen’s speech at the Rice Hall dedication (quoting Walt

Havenstein), what is “the only sport I know where everyone can turn pro”?

(Note: if you had the misfortune of not being able to attend Dean’s talk, you should still

be able to answer this question by searching for the quote using DuckDuckGo, Google,

or Bing.)

Running Time Analysis

2. Describe the worst-case asymptotic running time of the all-positive? Scheme procedure

defined below (from the Exam 1 comments). You may assume that all elements of p

have values below some bound k, so the running time of > is constant. Remember to

clearly define all variables you use in your answer.

 (define (all-positive? p)

 (if (null? p)

 true ; reached end without finding non-positive, so result is true

 (if (> (car lst) 0)

 (all-positive? (cdr lst)) ; keep looking

 false))) ; found one non-positive

3. Describe the worst-case asymptotic running time of the allPositive Python procedure

defined below (that behaves similarly to the Scheme procedure above). You may

assume that all elements of p have values below some bound k, so the running time of

<= is constant. Remember to clearly define all variables you use in your answer.

def allPositive(p):

 for x in p:

 if x <= 0: return False

 return True

4. Describe the worst-case asymptotic running time of the goldStarsSquare(g) Python

procedure defined below. The input, g, is a natural number. You should state clearly all

assumptions you make. Remember to clearly define all variables you use in your

answer. The best answers will be in terms of the size of the input, not the value of g, but

you will receive nearly full credit for a correct answer in terms of the value of g.

def rowGoldStars(g):

 for i in range(0, g):

 print "*",

 print # (end the row by printing a new line)

def goldStarsSquare(g):

 for i in range(0, g):

 rowGoldStars(g)

Mutation

5. Define a procedure that takes as input a mutable list of numbers, and modifies the list

so that each element is replaced with its negation. You may use either Scheme or

Python to define your procedure (your choice). For example, in Scheme you would

define the mlist-negate! procedure that behaves like this:

> (define p (mlist 1 -2 3 0 -17))

> (mlist-negate! p)

> p

 {-1 2 -3 0 17}

In Python you would define the listNegate procedure that behaves like this:

>>> p = [1, -2, 3, 0, -17]]

>>> listNegate(p)

>>> p

 [-1, 2, -3, 0, 17]

6. Define a Scheme procedure make-cumulative! that takes as input a mutable list, and

modifies the list so that each element is the cumulative total of all elements up to and

including itself. For example,

> (define p (mlist 1 2 3 4 5))

> (make-cumulative! p)

> p

{1 3 6 10 15}

Hint: you probably should start by defining a helper procedure. (For full credit for this

question, you must use Scheme. But, a correct answer using Python is worth most of

the credit.)

Bonus: what is the asymptotic running time of your make-cumulative! procedure. You

should not assume the running time of the + procedure is constant; instead, assume

that its running time is linear in the size (number of bits) of its inputs. (Use the back of

this page to answer the bonus question, but circle Bonus to indicate that you have

something we should look at for this.)

Interpreters

Suppose we want to add a new special form to Charme similar to the and special form in

Scheme. The grammar for the and special form is:

Expression → AndExpression

AndExpression → (and ExpressionList)

ExpressionList → ε

ExpressionList → Expression ExpressionList

The evaluation rule is:

To evaluate the and expression, (and E0 E1 … En), evaluate each sub-expression in

order until one evaluates to a false value. If any sub-expression evaluates to a false

value, the value of the and expression is false, and none of the following sub-

expression is evaluated. If none of the sub-expressions evaluate to a false value, the

value of the and expression is true. (Note that this means (and) should evaluate to

true.)

7. Explain why and needs to be a special form (that is, it requires modifying the Charme

evaluator and could not be implemented as a primitive procedure).

8. Define an evalAnd(expr) procedure that implements the evaluation rule for the and

special form. You may assume the value passed in as expr is parsed Charme expression

and that corresponds to a syntactically valid and expression.

Computability

The cs1120 staff is getting tired of having to grade so many programming questions1, so

wants to build a procedure that automates grading by checking if a solution submitted

implements the same function as our reference solution.

9. Is the CORRECT-ANSWER problem defined below computable? For full credit, your answer

must include a convincing proof supporting your answer.

Input: Strings that define two Python procedures, r (the reference procedure) and s

(the submitted procedure).

Output: True if the procedure defined by s correctly implements the same function

as the procedure defined by r. We say s correctly implements the same function as r

if for every input for which r produces a value, s produces the same value.

1 The obvious solution of just asking fewer questions had not occurred to us until we read your PS7

responses, but not everyone finds this solution satisfying.

10. Is the PROBABLY-CORRECT-ANSWER problem defined below computable? For full credit,

your answer must include a convincing proof supporting your answer.

Input: Strings that define two Python procedures, r (the reference procedure) and s

(the submitted procedure), a set V of test inputs, and a number t for the maximum

number of steps.

Output: True if the procedure defined by s probably implements the same function

as the procedure defined by r. We say s probably implements the same function as r

if for each element v of V, if r(v) produces a value within t steps, s(v) produces the

same value within t or fewer steps.

Problem Score Notes

1

2

3

4

5

6

7

8

9

10

Total

