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Final Exam - Solutions 
Language 

 

1. Write a small BNF replacement grammar that produces exactly 27 strings.   For full 

credit, your grammar should use only two different non-terminals and no more than 

three terminals. 

 

 

 

 

 

 

 

2. Write a BNF replacement grammar that produces all strings made up of 0s and 1s that 

end in a 0 and no other strings.  For example, your grammar should produce the strings 

01001010 and 0, but not 10101 or the empty string. 

 

  

S → T T T 

T → a | b | c 

 

This produces the 27 = 3××××3××××3 strings: aaa, aab, aac, aba, abb, 

abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, 

caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc 

S → T 0 

T → ε | B T 

B → 0 | 1 

 

 



 

 

Defining Procedures 

 

A famous unsolved problem in mathematics is the Collatz conjecture: 

1. Start with any natural number, n. 

2. If n is even, divide n by two.  If n is odd, multiply it by 3 and add 1. 

3. Keep going until you reach one. 

 

For example, starting from n = 1120, we would go through this sequence: 

 560,  280,  140,  70,  35,  106,  53,  160,  80,  40,  20,  10,  5,  16,  8,  4,  2,  1 

 

The Collatz conjecture speculates that no matter what number you start with, this process 

eventually reaches 1.  It is not known if this is true (but no one has yet found a natural 

number for which it fails). 

 

3. Define a procedure using either Scheme or Python (your choice) that takes as input a 

natural number n and tests the Collatz conjecture for n.  Your procedure should output 

the sequence of values on the path to reaching one as a list.  If the Collatz conjecture is 

false (that is, the value never reaches 1), your procedure may run forever.   

 

For example, in Scheme: 

 

> (collatz 1120) 

(1120 560 280 140 70 35 106 53 160 80 40 20 10 5 16 8 4 2 1) 

 

in Python: 

 

>>> collatz(1120) 

[1120, 560, 280, 140, 70, 35, 106, 53, 160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1] 

 

 

In Python: 

 

def collatz(n): 

    output = [] 

    while n != 1: 

        output.append(n) 

        if n % 2 == 0: 

            n = n / 2 

        else: 

            n = 3 * n + 1 

    output.append(n) 

    return output 

     



 

 

[Bonus] Explain why determining if a correct collatz procedure (that solves the previous 

question) is an algorithm would be worth at least a quadruple-gold-star.  

 

As mentioned in the question, it is not known if the Collatz process always reaches 1.  Our 

collatz procedure will always terminate if the Collatz conjecture is true, but will run forever 

on some natural number input if the Collatz conjecture is not true.  So, our procedure is an 

algorithm if and only if the Collatz conjecture is true, which requires solving an open 

mathematical problem. 

 

(I should have worded this question more carefully.  If we allow inputs that are not natural 

numbers, it is easy to answer the question since the procedure (as we defined it) runs forever 

on input 0.  Hence, it is obvious that it is not an algorithm, but since the Collatz procedure is 

only defined for natural numbers, it doesn’t matter for this question what happens on other 

inputs.) 

 

 

 

 

xkcd.com  



 

 

Running Time Analysis 

 

4. For each procedure below, give the worst-case asymptotic running time.  Remember to 

define all variables you use in your answer clearly, and state any assumptions.  

 

a. 

     (define (mlist-copy p) 

                 (if (null? p)  

                      null   

                      (mcons (mcar p) (mlist-copy (mcdr p))))) 

 

 

b. 

 def isSquare(n): 

    for i in range(1, n): 

        if i * i == n: 

            return True 

    return False 

 

 

  

The worst-case asymptotic running time is in Θ(N) where N is the 

number of elements in p (which is the size of the input). 

 

There are N recursive calls, and each call involves constant work. 

Assuming the * operations are constant time, the worst-case asymptotic 

running time is in Θ(V) where V is the value of input n, or Θ(2
N
) where N 

is the size (length) of the input.  The worst-case input is when n is not a 

square and its value is the maximum value that can be written in the 

input space (2
N
 – 1 using binary notation).  Then, there number of loop 

iterations is n, and each iteration is constant time (with the aggressive 

assumption about *). 



 

 

c. A magic square is a square where each row, column, and both diagonals sums to the 

same value.  Give the asymptotic running time of this Python procedure that tests if 

a square passed in as a list of lists is a magic square.  (You may assume all arithmetic 

operations used are constant time, and that the input p is a square.) 

 

def isMagicSquare(s): 

    target = 0 

    for e in s[0]: 

        target = target + e  

    diagsum = 0 

    revdiagsum = 0 

    for i in range(0, len(s)): 

        colsum = 0 

        rowsum = 0 

        diagsum = diagsum + s[i][i] 

        revdiagsum = revdiagsum + s[i][len(s) - i - 1] 

        for j in range(0, len(s)): 

            rowsum = rowsum + s[j][i] 

            colsum = colsum + s[i][j] 

        if colsum != target or rowsum != target: return False 

    return diagsum == target and revdiagsum == target 

 

 

Suppose S is an M×M square.  Then, the running time is in Θ(M
2
).   

In terms of the size of the input, N, the running time is in Θ(N).  The reason for 

this is that the value of len(s) is Θ(sqrt(N)) since s is a square matrix.  Thus the 

inner loop (for j in range(0, len(s)) involves Θ(sqrt(N)) iterations, and its body is 

constant time (with the assumption about arithmetic and indexing being 

constant).  There are Θ(sqrt(N)) iterations of this loop from the outer loop (for i 

in range(0, len(s))), so the total running time is in Θ(sqrt(N)) × Θ(sqrt(N)) = 

Θ(N). 

 



 

 

 

Mutation 

 

5. Define a procedure that takes as input a mutable list of numbers, and modifies the list 

so that every other element is replaced with its negation.  So, the first element should be 

negated, but not the second, etc.  You may use either Scheme or Python to define your 

procedure (your choice).  For example, in Scheme you would define the mlist-negate-

every-other! procedure that behaves like this: 

 

> (define p (mlist 1 -2 3 0 -17)) 

> (mlist-negate-every-other! p) 

> p 

 {-1 -2 -3 0 17} 

 

In Python you would define the listNegateEveryOther procedure that behaves like this: 

 

>>> p = [1, -2, 3, 0, -17] 

>>> listNegateEveryOther(p) 

>>> p 

 [-1, -2, -3, 0, 17] 

 

 

def listNegateEveryOther(p): 

    odd = True 

    for i in range(0, len(p)): 

        if odd: p[i] = -p[i] 

        odd = not odd 



 

 

 

6. Define a Scheme or Python procedure that takes as input a mutable list, and modifies 

the list so that each element is the maximum value of all elements up to and including 

itself.  Your procedure must modify the input list.   

 

For example, in Scheme: 

 

> (define p (mlist 1 2 3 2 4 6 3)) 

> (make-maxilative! p) 

> p 

{1 2 3 3 4 6 6} 

 

For example, in Python: 

>>> p = [1, 2, 3, 2, 4, 6, 3] 

>>> makeMaxilative(p) 

>>> p 

 [1, 2, 3, 3, 4, 6, 6] 

 

 

 

  

def makeMaxilative(p): 

    max = False 

    for i in range(0, len(p)): 

        if not max or p[i] > max: 

            max = p[i] 

        else: 

            p[i] = max 



 

 

Interpreters 

 

Suppose we want to add a new special form to Charme similar to the for construct in 

Python.  The grammar for the for special form is: 

 

Expression   →  ForExpression 

ForExpression → (for Name in Expression1 do Expression2) 

 

The first expression should evaluate to a list; the second expression can be any expression. 

The evaluation rule is: 

 

To evaluate the for expression, (for N in E1 do E2), evaluate the expression E1, which 

must evaluate to a list.  Then, for each element in the list evaluate the expression E2 

in a new environment where the name N is bound to the value of that element.  The 

value of the for expression is a list containing the results of each evaluation of E2. 

 

Here are a few examples: 

 

 > (for x in (list 1 2 3 4) (+ x 1))  

 (2 3 4 5) 

 > (for x in (list 2 3) (* x x))  

 (4 9) 

 

7. Define an evalFor(expr, env) procedure that implements the evaluation rule for the for 

special form as defined above.  You may assume the value passed in as expr is parsed 

Charme expression and that corresponds to a syntactically valid for expression. 

 

def evalFor(expr, env): 

   var = expr[1] 

   lst = meval(expr[3], env) 

   body = expr[4] 

   res = [] 

   for el in lst: 

       newenv = new Environment(env) 

       newenv.addVariable(var, el) 

       res.append(meval(body, newenv)) 

   return res 

    



 

 

 

8. Would it be a good idea to add for to Charme (or Scheme)?  Provide a convincing 

argument supporting your answer. 

 

 

 

 

  

Not really.  There is no need for a special construct for this since we could just define 

map as a regular procedure that does essentially the same thing.   



 

 

Computability 

 

9. Is the RUNS-FOREVER problem defined below computable?  For full credit, your answer 

must include a clear and convincing proof supporting your answer.   

 

Input: A string s that defines a Python program. 

 

Output: True if the program defined by s runs forever.  False if the program defined 

by s will eventually finish. 

 

  

No.  RUNS-FOREVER is not computable.  To prove this, we show how we could define an 

algorithm halts(s) that solves the HALTING-PROBLEM using an algorithm runsForever(s) that 

solves the RUNS-FOREVER problem.  This is easy since the result for halts is just the opposite 

of the result for runsForever: 

 

def halts(s): 

   return not runsForever(s) 



 

 

10. Is the RUNS-LONGER problem defined below computable?  For full credit, your answer 

must include a convincing proof supporting your answer.   

 

Input: Strings that define two Python procedures, p and q. 

 

Output: True if the procedure defined by p takes longer to finish running than the 

procedure defined by q.  A procedure takes longer to finish than another procedure if 

the first procedure finishes in K steps (for some number K), and the second 

procedure does not finish with K steps. 

 

 

 

 

 

  

This is trickier, but is also not computable.   

 

Here’s how to use an algorithm that solves runsLonger(p, q) to implement halts(p): 

 

def halts(p): 

   return runsLonger(“pass; ” + p, p) 

 

If p halts, that means it finishes in K steps for some K.  Assuming pass takes one step, “pass; “ 

+ p will finish in K+1 steps.  Hence, when p halts, runsLonger(“pass; ” + p, p) returns True, 

which is the correct result. 

 

If p does not halt, both inputs to runsLonger run forever, and runsLonger outputs False, 

which is the correct result. 


