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Menu

• compose and n-times

•Measuring Work:

What θ really means

•Quicker Sorting
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What does θ really mean?

• O(x) – it is no more than x work 
(upper bound)

• Θ(x) – work scales as x (tight bound)

• Ω(x) – it is at least x work 

(lower bound)

If O(x) and Ω(x) are true, 

then Θ(x) is true.
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Meaning of O (“big Oh”)

f(x) is O (g (x)) means:

There is a positive constant c

such that 

c * f(x) < g(x)

for all but a finite number of x

values. 
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O Examples
f(x) is O (g (x)) means:

There is a positive constant c such that 

c * f(x) < g(x)

for all but a finite number of x values. 

x is O (x2)? Yes, c = 1 works fine.

10x is O (x)? Yes, c = .09 works fine.

x2 is O (x)? No, no matter what c we pick,
cx2 > x for big enough x
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Lower Bound: Ω (Omega)

f(x) is Ω (g (x)) means:

There is a positive constant c

such that 

c * f(x) > g(x)

for all but a finite number of x

values. 
Difference from O – this was <
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f(x) is Ω (g (x)) means:

There is a positive constant c such that 
c * f(x) > g(x)

for all but a finite number of x values. 
f(x) is O (g (x)) means:

There is a positive constant c such that 
c * f(x) < g(x)

for all but a finite number of x values. 

Examples

• x is Ω (x)

– Yes, pick c = 2

• 10x is Ω (x)

– Yes, pick c = 1

• Is x2 Ω (x)?

– Yes!

• x is O(x)

– Yes, pick c = .5

• 10x is O(x)

– Yes, pick c = .09

• x2 is not O(x)
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Tight Bound: θ (Theta)

f(x) is θ (g (x)) iff:

f(x) is O (g (x))

and f(x) is Ω (g
(x))
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θ Examples
• 10x is θ (x)

– Yes, since 10x is Ω (x) and 10x is O(x)
• Doesn’t matter that you choose different c
values for each part; they are independent

• x2 is/is not θ (x)?

–No, since x2 is not O (x) 

• x is/is not θ (x2)?

–No, since x2 is not Ω (x) 
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Sorting
(define (simple-sort cf lst)
(if (null? lst) lst

(let ((best (find-best cf lst)))
(cons 

best 
(simple-sort cf

(delete lst most))))))

(define (find-best cf lst)
(insertl
(lambda (c1 c2)
(if (cf c1 c2) c1 c2))

lst
(car lst)))

simple-sort is Θ(n2)
If we double the length of the list, we 
amount of work sort does approximately
quadruples.
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Is our sort good enough?

Takes over 1 second to sort 1000-length 
list.  How long would it take to sort 1 
million items?

Θ(n2)
1s = time to sort 1000

4s   ~ time to sort 2000

1M is 1000 * 1000

Sorting time is n2

so, sorting 1000 times as many items will take 10002 times as long 
= 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.

It would take 20,000 years to process a VISA transaction at this rate.
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Divide and Conquer sorting?

• simple-sort: find the lowest in the list, add 
it to the front of the result of sorting the 
list after deleting the lowest

• Insertion sort: insert the first element of 
the list in the right place in the sorted rest 
of the list
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insertsort

(define (insertsort cf lst)
(if (null? lst) 

null
(insertone cf

(car lst) 
(insertsort cf (cdr lst)))))
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insertone

(define (insertone cf el lst)
(if (null? lst) 

(list el)
(if (cf el (car lst))
(cons el lst)
(cons (car lst)

(insertone cf el (cdr lst))))))
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How much work is insertsort?
(define (insertsort cf lst)
(if (null? lst) 

null
(insertone cf

(car lst) 
(insertsort cf

(cdr lst)))))

(define (insertone cf el lst)
(if (null? lst) 

(list el)
(if (cf el (car lst))

(cons el lst)
(cons (car lst)

(insertone cf el
(cdr lst))))))

Worst case?
Average case?

insertone is Θ(n)

How many times does 
insertsort evaluate insertone?

n times (once for each element)

insertsort is Θ(n2)
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> (insertsort < (revintsto 20))
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Requires 190 applications of <

> (insertsort < (intsto 20))
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)

Requires 19 applications of <

> (insertsort < (rand-int-list 20))
(0 11 16 19 23 26 31 32 32 34 42 45 53 63 64 81 82 
84 84 92)

Requires 104 applications of <
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> (simplesort < (intsto 20))

(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
20)

Requires 210 applications of <

> (simplesort < (rand-int-list 20))

(4 4 16 18 19 20 23 32 36 51 53 59 67 69 73 75 
82 82 88 89)

Requires 210 applications of <
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simplesort vs. insertsort

• Both are Θ(n2) worst case (reverse 

list)

• Both are Θ(n2) average case 

(random)

–But insert-sort is about twice as fast

• insertsort is Θ(n) best case (ordered 

list)
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Can we do better?

(insertone < 88 

(list 1 2 3 5 6 23 63 77 89 90))

Suppose we had procedures

(first-half lst)
(second-half lst)

that quickly divided the list in two halves?
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Charge

• Read Tyson’s essay (before Friday)

– How does it relate to θ (n2)

– How does it relate to grade inflation

– Don’t misinterpret it as telling you to run out 
and get tattoos and piercings!


