Menu

e compose and n-times
e Measuring Work:

What 6 really means
e Quicker Sorting

-— .
CS150 Fall 2005: Lecture 10: Measuring Work 2 ﬁ“ﬁ COmplgsl’ Scte{,lce

What does 6 really mean?
e (x) — it is no more than x work
(upper bound)
* O(x) — work scales as x (tight bound)
e Q(x) —itis at least x work
(lower bound)
If Ax) and Q(x) are true,
then ©(x) is true.

Meaning of O (“big Oh")

fix) is O (g (x)) means:
There is a positive constant ¢
such that
¢ * flx) <g(x)
for all but a finite number of x
values.

- y
CS150 Fall 2005: Lecture 10: Measuring Work 3 fii Computg.r Scne&ce
By i Uiy & Visci

- .
CS150 Fall 2005: Lecture 10: Measuring Work 4 |-|_||||-| COlllputSI SClC?CS
= or s UNVERSITY o7 ViRGiia|

O Examples
fx) is O (g (x)) means:
There is a positive constant ¢ such that
c*flx) < g(x)

for all but a finite number of x values.
xis O(x?)?
10x is O (x)? Yes, c=.09 works fine.
x2 ?

Yes, ¢ = 1 works fine.

No, no matter what ¢ we pick,
cx? > x for big enough x

CS150 Fall 2005: Lecture 10: Measuring Work

Lower Bound: £2 (Omega)

f(x) is & (g (x)) means:
There is a positive constant ¢
such that
¢ * fix) > g(x)
for all but a finite number of x

values.
Difference from O - this was <

P -
5 i Computer Science,

CS150 Fall 2005: Lecture 10: Measuring Work

P -
6 i Computer Science,

fx)is Q (g (x)) means:
E | There is a positive constant ¢ such that
Xamples ¢ *) > g(x)
for all but a finite number of x values.
fix) is O(g (x)) means:
There is a positive constant ¢ such that
¢ * flx) <gx)
is O for all but a finite number of x values.
e xIS ()C) e xis qx)
— Yes, pick ¢ = 2 —Yes, pick ¢ = .5
« 10xis £ (x) e 10xis Ax)
—-Yes, pickc =1 —Yes, pick ¢ = .09
o x2j
e Is 2 Q (x)? x* is not O(x)
- Yes!
€S150 Fall 2005 Lecture 10: Measuring Work 7 !'IEI‘! Compgf‘erg“ .Sxf\i?&ﬁ%\

6 Examples
« 10xis @ (x)

—Yes, since 10xis € (x) and 10x is O(x)

* Doesn't matter that you choose different ¢
values for each part; they are independent

« x2is/is not O (x)?

—No, since »?is not O (x)
e xisfis not O (x2)?

—No, since »2is not @ (x)

-
€S150 Fall 2005: Lecture 10: Measuring Work 9 fiiiig Computg

Is our sort good enough?

Takes over 1 second to sort 1000-length

list. How long would it take to sort 1
million items?

1s = time to sort 1000
4s ~ time to sort 2000

O(n?)

1M is 1000 * 1000

Sorting time is n?

so, sorting 1000 times as many items will take 10002 times as long
= 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.
It would take 20,000 years to process a VISA transaction at this rate.

CS150 Fall 2005: Lecture 10: Measuring Work

= -
11 gimj Computer Science |

Tight Bound: @ (Theta)

fix) is 6 (g () iff:
flx)is O(g (x)

and fix) is 2 (g
(x))

CS150 Fall 2005: Lecture 10: Measuring Work

= -
8 il Computer Science |

Sorting

(define (simple-sort cf Ist) (define (find-best cf Ist)

(if (null? Ist) Ist

: (insertl
(let ((best (find-best cf Ist))) (lambda (c1 c2)
(cons (if (cf c1 c2) c1 c2))
best Ist
(simple-sort cf (car Ist)))

(delete Ist most))))))

simple-sort is ©(n?)
If we double the length of the list, we

amount of work sort does approximately
quadruples.

-
CS150 Fall 2005: Lecture 10: Measuring Work 10 il Comput‘e]r Sci

Divide and Conquer sorting?

» simple-sort: find the lowest in the list, add
it to the front of the result of sorting the
list after deleting the lowest

o Insertion sort: insert the first element of

the list in the right place in the sorted rest
of the list

CS150 Fall 2005: Lecture 10: Measuring Work

= -
12 Computer Science |

insertsort

(define (insertsort cf Ist)
(if (null? Ist)
null
(insertone cf
(car Ist)
(insertsort cf (cdr Ist)))))

CS150 Fall 2005: Lecture 10: Measuring Work

= -
13 Computer Science |

How much work is insertsort?

(define (insertsort cf Ist) (define (insertone cf el Ist)

(if (nuII? |St) (if (nuII? |St)
null ("St eI)
(insertone cf (if (cf el (car Ist))
(car Ist) (cons el Ist)
(insertsort cf (cons (_car Ist)
(cdr Is)))) (insertone cf el

. (cdr Ist))))))
How many times does Worst case?

i i ?
insertsort evaluate insertone? Average case?
n times (once for each element)

insertsort is ©(n2) insertone is ©(n)

- P
€S150 Fall 2005: Lecture 10: Measuring Work 15 il Computgr Scne{lce
g priiipgioed)

insertone

(define (insertone cf el Ist)
(if (null? Ist)
(list el)
(if (cf el (car Ist))
(cons el Ist)
(cons (car Ist)
(insertone cf el (cdr Ist))))))

- .
CS150 Fall 2005: Lecture 10: Measuring Work 14 ﬁmﬁ COITIPU}FS!' Sctegce

> (insertsort < (revintsto 20))
(1234567891011121314151617 18 19 20)
Requires 190 applications of <

> (insertsort < (intsto 20))
(1234567891011121314151617 18 19 20)
Requires 19 applications of <

> (insertsort < (rand-int-list 20))
(0111619 23 26 31 323234424553 63 64 8182
84 84 92)

Requires 104 applications of <

- P
€S150 Fall 2005: Lecture 10: Measuring Work 16 il Computgr Scne{lce
g priiipgioed)

> (simplesort < (intsto 20))

(1234567891011121314151617 1819
20)
Requires 210 applications of <

> (simplesort < (rand-int-list 20))

(44161819 20 23 3236 51 53 59 67 69 73 75
82 82 88 89)
Requires 210 applications of <

simplesort vs. insertsort

e Both are ®(n?) worst case (reverse
list)

* Both are ®(n?) average case
(random)
—But insert-sort is about twice as fast

e insertsort is @(n) best case (ordered
list)

- .
CS150 Fall 2005: Lecture 10: Measuring Work 17 ﬁmﬁ COITIPU}FS!' Sctegce

- .
CS150 Fall 2005: Lecture 10: Measuring Work 18 ﬁmﬁ COITIPU}FS!' Sctegce

Can we do better?

(insertone < 88
(list 12356236377 8990))

Suppose we had procedures
(first-half Ist)
(second-half Ist)
that quickly divided the list in two halves?

Charge

¢ Read Tyson’s essay (before Friday)
—How does it relate to 6 (n?)
—How does it relate to grade inflation

—Don't misinterpret it as telling you to run out
and get tattoos and piercings!

- .
€S150 Fall 2005 Lecture 10: Measuring Work 19 il Compuf‘eyr Sctegce

- .
€S150 Fall 2005 Lecture 10: Measuring Work 20 il Compuf‘eyr Sctegce

