
1

David Evans
http://www.cs.virginia.edu/evans

Class 13:
Quicksort,
Problems
and
Procedures

CS150: Computer Science

University of Virginia

Computer Science

Queen’s University, Belfast, Northern Ireland

2CS150 Fall 2005: Lecture 13: Problems and Procedures

Why are we spending so much
time on sorting?

• Reason 1: its important

• Reason 2: it is a well
defined problem for
exploring algorithm
design and complexity
analysis

A sensible programmer rarely (if ever) writes
their own code for sorting – there are sort
procedures provided by all major languages 800 pages long!

3CS150 Fall 2005: Lecture 13: Problems and Procedures

Art of Computer Programming, Donald E. Knuth

• Volume 1 (1968): Fundamental Algorithms

• Volume 2: Seminumerical Algorithms

– Random numbers, arithmetic

• Volume 3: Sorting and Searching

• Volume 4: Combinatorial Algorithms (in preparation,
2005)

• Volume 5: Syntactic Algorithms (estimated for 2010)

• Volume 6, 7: planned

The first finder of any error in my books receives $2.56; significant suggestions
are also worth $0.32 each. If you are really a careful reader, you may be able to
recoup more than the cost of the books this way.

4CS150 Fall 2005: Lecture 13: Problems and Procedures

Recap: insertsort-tree
(define (insertel-tree cf el tree)
(if (null? tree)
(make-tree null el null)
(if (cf el (get-element tree))
(make-tree (insertel-tree cf el (get-left tree))

(get-element tree)
(get-right tree))

(make-tree (get-left tree)
(get-element tree)
(insertel-tree cf el (get-right tree))))))

(define (insertsort-tree cf lst)
(define (insertsort-worker cf lst)
(if (null? lst) null
(insertel-tree cf (car lst)

(insertsort-worker cf (cdr lst)))))
(extract-elements (insertsort-worker cf lst)))

θ(log n)

n = number of
elements in tree

θ(n log n)

n = number of
elements in lst

5CS150 Fall 2005: Lecture 13: Problems and Procedures

Can we do better?

• Making all those trees is a lot of work

• Can we divide the problem in two halves,
without making trees?

6CS150 Fall 2005: Lecture 13: Problems and Procedures

Quicksort

• Sir C. A. R. (Tony) Hoare, 1962

• Divide the problem into:

– Sorting all elements in the list where

(cf (car list) el)

is true (it is < the first element)

– Sorting all other elements

(it is >= the first element)

• Will this do better?

2

7CS150 Fall 2005: Lecture 13: Problems and Procedures

Quicksort

(define (quicksort cf lst)
(if (null? lst) lst
(append
(quicksort cf
(filter (lambda (el) (cf el (car lst)))

(cdr lst)))
(list (car lst))
(quicksort cf
(filter (lambda (el) (not (cf el (car lst))))

(cdr lst))))))

8CS150 Fall 2005: Lecture 13: Problems and Procedures

How much
work is
quicksort?

(define (quicksort cf lst)
(if (null? lst) lst
(append
(quicksort cf
(filter (lambda (el) (cf el (car lst)))

(cdr lst)))
(list (car lst))
(quicksort cf
(filter (lambda (el) (not (cf el (car lst))))

(cdr lst))))))

What if the input list is sorted?

Worst Case: Θ(n2)

What if the input list is random?

Expected: Θ(n log2 n)

9CS150 Fall 2005: Lecture 13: Problems and Procedures

Comparing sorts
> (testgrowth insertsort-tree)
n = 250, time = 20
n = 500, time = 80
n = 1000, time = 151
n = 2000, time = 470
n = 4000, time = 882
n = 8000, time = 1872
n = 16000, time = 9654
n = 32000, time = 31896
n = 64000, time = 63562
n = 128000, time = 165261
(4.0 1.9 3.1 1.9 2.1 5.2 3.3 2.0 2.6)

> (testgrowth quicksort)
n = 250, time = 20
n = 500, time = 80
n = 1000, time = 91
n = 2000, time = 170
n = 4000, time = 461
n = 8000, time = 941
n = 16000, time = 2153
n = 32000, time = 5047
n = 64000, time = 16634
n = 128000, time = 35813
(4.0 1.1 1.8 2.7 2.0 2.3 2.3 3.3 2.2)

Both are Θ(n log2 n)

Absolute time of quicksort much faster

10CS150 Fall 2005: Lecture 13: Problems and Procedures

Good enough for VISA?
n = 128000, time = 35813

36 seconds to sort 128000 with quicksort

Θ(n log2 n)

How long to sort 800M items?
> (log 4)
1.3862943611198906
> (* 128000 (log 128000))
1505252.5494914246
> (/ (* 128000 (log 128000)) 36)
41812.57081920624
> (/ (* 128000 (log 128000)) 41812.6)
35.99997487578923
> (/ (* 800000000 (log 800000000)) 41812.6)
392228.6064130373 392000 seconds ~ 4.5 days

11CS150 Fall 2005: Lecture 13: Problems and Procedures

Are there any procedures more
complex than simulating the

universe (Θ(n3)) ?

12CS150 Fall 2005: Lecture 13: Problems and Procedures

Permuted Sorting

• A (possibly) really dumb way to sort:

– Find all possible orderings of the list
(permutations)

– Check each permutation in order, until you find
one that is sorted

• Example: sort (3 1 2)

All permutations:

(3 1 2) (3 2 1) (2 1 3) (2 3 1) (1 3 2) (1 2 3)
is-sorted? is-sorted?is-sorted? is-sorted? is-sorted? is-sorted?

3

13CS150 Fall 2005: Lecture 13: Problems and Procedures

permute-sort

(define (permute-sort cf lst)
(car
(filter (lambda (lst) (is-sorted? cf lst))

(all-permutations lst))))

14CS150 Fall 2005: Lecture 13: Problems and Procedures

is-sorted?

(define (is-sorted? cf lst)
(or (null? lst) (= 1 (length lst))
(and (cf (car lst) (cadr lst))

(is-sorted? cf (cdr lst)))))

15CS150 Fall 2005: Lecture 13: Problems and Procedures

all-permutations
(define (all-permutations lst)
(flat-one
(map
(lambda (n)
(if (= (length lst) 1)
(list lst) ; The permutations of (a) are ((a))
(map
(lambda (oneperm)
(cons (nth lst n) oneperm))
(all-permutations (exceptnth lst n)))))

(intsto (length lst)))))

16CS150 Fall 2005: Lecture 13: Problems and Procedures

> (time (permute-sort <= (rand-int-list 5)))
cpu time: 10 real time: 10 gc time: 0
(4 14 14 45 51)
> (time (permute-sort <= (rand-int-list 6)))
cpu time: 40 real time: 40 gc time: 0
(6 29 39 40 54 69)
> (time (permute-sort <= (rand-int-list 7)))
cpu time: 261 real time: 260 gc time: 0
(6 7 35 47 79 82 84)
> (time (permute-sort <= (rand-int-list 8)))
cpu time: 3585 real time: 3586 gc time: 0
(4 10 40 50 50 58 69 84)
> (time (permute-sort <= (rand-int-list 9)))

Crashes!

17CS150 Fall 2005: Lecture 13: Problems and Procedures

How much
work is
permute-sort?

• We evaluated is-sorted? once for each
permutation of lst.

• How much work is is-sorted??

Θ(n)
• How many permutations of the list are
there?

(define (permute-sort cf lst)
(car
(filter (lambda (lst) (is-sorted? cf lst))

(all-permutations lst))))

18CS150 Fall 2005: Lecture 13: Problems and Procedures

Number of permutations

• There are n = (length lst) values in the first map,
for each possible first element

• Then, we call all-permutations on the list without
that element (length = n – 1)

• There are n * n – 1 * … * 1 permutations

• Hence, there are n! lists to check: Θ(n!)

(map
(lambda (n)
(if (= (length lst) 1) (list lst)
(map (lambda (oneperm) (cons (nth lst n) oneperm))

(all-permutations (exceptnth lst n)))))
(intsto (length lst)))

4

19CS150 Fall 2005: Lecture 13: Problems and Procedures

Are there any procedures more
complex than simulating the

universe (Θ(n3)) ?

Maybe this is the wrong question…

20CS150 Fall 2005: Lecture 13: Problems and Procedures

Procedures and Problems

• So far we have been talking about
procedures (how much work is permute-
sort?)

• We can also talk about problems: how
much work is sorting?

• A problem defines a desired output for a
given input. A solution to a problem is a
procedure for finding the correct output
for all possible inputs.

21CS150 Fall 2005: Lecture 13: Problems and Procedures

The Sorting Problem

• Input: a list and a comparison
function

• Output: a list such that the elements
are the same elements as the input
list, but in order so that the
comparison function evaluates to true
for any adjacent pair of elements

22CS150 Fall 2005: Lecture 13: Problems and Procedures

Problems and Procedures
• If we know a procedure that is that is

Θ(f(n)) that solves a problem then we know

the problem is O (f(n)).

• The sorting problem is O (n!) since we
know a procedure (permute-sort) that

solves it in Θ (n!)

• Is the sorting problem is Θ(n!)?
No, we would need to prove there is no

better procedure.

23CS150 Fall 2005: Lecture 13: Problems and Procedures

Problems and Procedures
• Sorting problem is O(n log n)

– We know a procedure (quicksort) that solves

sorting in Θ(n log n)

• Is the sorting problem Θ(n log n)?

– To know this, we need to prove there is no
procedure that solves the sorting problem with
time complexity better than Θ(n log n)

24CS150 Fall 2005: Lecture 13: Problems and Procedures

Sorting problem is Ω(n log n)

• There are n! possible orderings

• Each comparison can eliminate at best ½
of them

• So, best possible sorting procedure is
Ω(log2n!)

• Sterling’s approximation: n! = Ω(nn)

– So, best possible sorting procedure is

Ω(log (nn)) = Ω(n log n) Recall log multiplication
is normal addition:
log mn = log m + log n

5

25CS150 Fall 2005: Lecture 13: Problems and Procedures

Problems and Procedures
• Sorting problem is Θ(n log n)

– We know a procedure (quicksort) that solves sorting in

Θ(n log n)

– We know there is no faster procedure since best sorting
procedure is Ω(n log n)

• This is unusual: there are very few problems for
which we know Θ

– It is “easy” to get O for a problem: just find a procedure
that solves it

– It is extraordinarily difficult to get Ω for most
problems: need to reason about all possible procedures

26CS150 Fall 2005: Lecture 13: Problems and Procedures

Charge
• Next class:

– Some problems that are “hard”
• No procedure is known that is less complex than
simulating the universe

– Introduce the most famous and important
open problem in Computer Science

• Are these really hard problems?

• Will return PS3 Friday

• PS4: Due Monday

