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Menu

• Objects Review

• Object-Oriented Programming

• Inheritance
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Objects

•When we package state and 
procedures together we have 
an object

• Programming with objects is 
object-oriented programming
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Counter in Scheme

(define (make-ocounter)
((lambda (count)
(lambda (message)
(if (eq? message 'reset) (set! count 0)

(if (eq? message 'next) 
(set! count (+ 1 count))
(if (eq? message 'how-many)

count)))))
0))
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Counter in Scheme using let

(define (make-ocounter)
(let ((count 0))
(lambda (message)
(if (eq? message 'reset) (set! count 0)

(if (eq? message 'next) 
(set! count (+ 1 count))
(if (eq? message 'how-many)

count))))))
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Defining ask

> (ask bcounter 'how-many)
0
> (ask bcounter 'next)
> (ask bcounter 'how-many)
1

(ask Object Method)

(define (ask object message)
(object message))
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make-number
(define make-number
(lambda (n)
(lambda (message)
(cond
((eq? message 'value) 
(lambda (self) n))
((eq? message 'add) 
(lambda (self other)
(+ (ask self 'value) 

(ask other 'value))))))))

Why don’t we just use n?
(Well see why later today.)
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ask with arguments

(define (ask object message . args)
(apply (object message) object args))

(define (ask object message)
(object message))

The . means take all the rest of the 
parameters and make them into a list.
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global

environment

+ : #<primitive:+>

make-number: 

parameters: 
body: ((lambda …

n :  3

(define make-number
(lambda (n)
(lambda (message)
(cond
((eq? message 'value) 
(lambda (self) n))
((eq? message 'add) 

(lambda (self other)
(+ (ask self 'value) 
(ask other 'value))))))))

san: 

parameters: message 
body: (cond ((eq? …

> (define san 
(make-number 3))

> (ask san 'value)
3
> (ask san 'add 

(make-number 4))
7
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Object-Oriented 
Programming
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Simula

• Considered the first “object-oriented”
programming language

• Language designed for simulation by 
Kristen Nygaard and Ole-Johan Dahl 
(Norway, 1962)

• Had special syntax for defining classes 
that packages state and procedures 
together
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Counter in Simula

class counter; 

integer count;

begin

procedure reset(); count := 0; end;

procedure next(); 

count := count + 1; end;

integer procedure how-many();

how-many := count; end;

end
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XEROX Palo Alto Research Center (PARC)

1970s:

• Bitmapped display

• Graphical User Interface 

– Steve Jobs paid $1M to visit and PARC, and 
returned to make Apple Lisa/Mac

• Ethernet

• First personal computer (Alto)

• PostScript Printers

• Object-Oriented Programming
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Dynabook, 1972
(Just a model)

“Don’t worry about what 
anybody else is going to do…
The best way to predict the 
future is to invent it. Really 

smart people with 
reasonable funding can do 
just about anything that 

doesn't violate too many of 
Newton's Laws!”
— Alan Kay, 1971
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Dynabook 1972
• Tablet computer

• Intended as tool for learning

• Kay wanted children to be able to program 
it also

• Hallway argument, Kay claims you could 
define “the most powerful language in the 
world in a page of code”

• Proof: Smalltalk 

– Scheme is as powerful, but takes two pages
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BYTE 
Magazine, 
August 
1981
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Smalltalk

• Everything is an object

• Objects communicate by sending and 
receiving messages

• Objects have their own state (which may 
contain other objects)

• How do you do 3 + 4?

send the object 3 the message “+ 4”
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Counter in Smalltalk

class name counter

instance variable names count

new count <- 0

next count <- count + 1

how-many ^ count
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Inheritance
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There are many kinds of numbers…

• Whole Numbers (0, 1, 2, …)

• Integers (-23, 73, 0, …)

• Fractions (1/2, 7/8, …)

• Floating Point (2.3, 0.0004, 3.14159)

• But they can’t all do the same things

– We can get the denominator of a fraction, but 
not of an integer
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make-fraction
(define make-fraction
(lambda (numerator denominator)
(lambda (message)
(cond
((eq? message 'value) 
(lambda (self) (/ numerator denominator))
((eq? message 'add) 
(lambda (self other)
(+ (ask self 'value) (ask other 'value)))

((eq? message ‘get-numerator) 
(lambda (self) numerator))
((eq? message ‘get-denominator) 
(lambda (self) denominator))
)))))

Same as in

make-number

Note: our add
method evaluates

to a number, not

a fraction object 
(which would be 

better).
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Why is redefining add a bad thing?

• Cut-and-paste is easy but…

• There could be lots of number methods 
(subtract, multiply, print, etc.)

• Making the code bigger makes it harder to 
understand

• If we fix a problem in the number add 
method, we have to remember to fix the 
copy in make-fraction also (and real, 
complex, float, etc.)
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make-fraction
(define (make-fraction numer denom)

(let ((super (make-number #f)))
(lambda (message)
(cond
((eq? message 'value) 
(lambda (self) (/ numer denom)))

((eq? message 'get-denominator) 
(lambda (self) denom))

((eq? message 'get-numerator) 
(lambda (self) numer))

(else 
(super message))))))
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Using Fractions

> (define half (make-fraction 1 2))
> (ask half 'value)
1/2
> (ask half 'get-denominator)
2
> (ask half 'add (make-number 1))
3/2
> (ask half 'add half)
1
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> (trace ask)
> (trace eq?)
> (ask half 'add half)
|(ask #<procedure> add #<procedure>)

| (eq? add value)
| #f
| (eq? add get-denominator)
| #f
| (eq? add get-numerator)
| #f
| (eq? add value)
| #f
| (eq? add add)
| #t

| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
|1
1
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> (trace ask)
> (trace eq?)
> (ask half 'add half)
|(ask #<procedure> add #<procedure>)

| (eq? add value)
| #f
| (eq? add get-denominator)
| #f
| (eq? add get-numerator)
| #f
| (eq? add value)
| #f
| (eq? add add)
| #t

| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
|1
1

make-number
make-fraction
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Inheritance

Inheritance is using the definition of one 
class to make another class

make-fraction uses make-number to 
inherit the behaviors of number
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Number

Fraction

Note: people 

sometimes draw 
this different ways 

• English

A Fraction is a kind of Number.

• C++

Fraction is a derived class whose base 
class is Number

• Java

Fraction extends Number.  

• Eiffel

Fraction inherits from Number.

• Beta

Fraction is a subpattern of Number.

• Smalltalk (72) (and Squeak 05)
Don’t have inheritance!
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CS 150:

Fraction inherits from Number.

Fraction is a subclass of Number.

The superclass of Fraction is 
Number.

Number

Fraction
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Subtyping

• Subtyping is very important in statically 
typed languages (like C, C++, C#, Java, 
Pascal) where you have to explicitly 
declare a type for all variables:

method Number add (Number n) { … }

• We won’t cover subtyping (although we 
will talk more about types later)

Because of subtyping, either a Number or a Fraction

(subtype of Number) could be passed as the argument
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Who was the first 
object-oriented 
programmer?
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By the word operation, we mean any process which 
alters the mutual relation of two or more things, be this 
relation of what kind it may. This is the most general 
definition, and would include all subjects in the 
universe.  Again, it might act upon other things besides 
number, were objects found whose mutual fundamental 
relations could be expressed by those of the abstract 
science of operations, and which should be also 
susceptible of adaptations to the action of the operating 
notation and mechanism of the engine... Supposing, for 
instance, that the fundamental relations of pitched 
sounds in the science of harmony and of musical 
composition were susceptible of such expression and 
adaptations, the engine might compose elaborate and 
scientific pieces of music of any degree of complexity or 
extent. Ada, Countess of Lovelace, around 1830
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Charge

• PS5: Due Monday

• PS6: Out Monday

– Programming an adventure game using 
objects and inheritance


