
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Class 22:
Inheritance

2CS150 Fall 2005: Lecture 22: Inheritance

Menu

• Objects Review

• Object-Oriented Programming

• Inheritance

3CS150 Fall 2005: Lecture 22: Inheritance

Objects

•When we package state and
procedures together we have
an object

• Programming with objects is
object-oriented programming

4CS150 Fall 2005: Lecture 22: Inheritance

Counter in Scheme

(define (make-ocounter)
((lambda (count)
(lambda (message)
(if (eq? message 'reset) (set! count 0)

(if (eq? message 'next)
(set! count (+ 1 count))
(if (eq? message 'how-many)

count)))))
0))

5CS150 Fall 2005: Lecture 22: Inheritance

Counter in Scheme using let

(define (make-ocounter)
(let ((count 0))
(lambda (message)
(if (eq? message 'reset) (set! count 0)

(if (eq? message 'next)
(set! count (+ 1 count))
(if (eq? message 'how-many)

count))))))

6CS150 Fall 2005: Lecture 22: Inheritance

Defining ask

> (ask bcounter 'how-many)
0
> (ask bcounter 'next)
> (ask bcounter 'how-many)
1

(ask Object Method)

(define (ask object message)
(object message))

2

7CS150 Fall 2005: Lecture 22: Inheritance

make-number
(define make-number
(lambda (n)
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) n))
((eq? message 'add)
(lambda (self other)
(+ (ask self 'value)

(ask other 'value))))))))

Why don’t we just use n?
(Well see why later today.)

8CS150 Fall 2005: Lecture 22: Inheritance

ask with arguments

(define (ask object message . args)
(apply (object message) object args))

(define (ask object message)
(object message))

The . means take all the rest of the
parameters and make them into a list.

9CS150 Fall 2005: Lecture 22: Inheritance

global

environment

+ : #<primitive:+>

make-number:

parameters:
body: ((lambda …

n : 3

(define make-number
(lambda (n)
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) n))
((eq? message 'add)

(lambda (self other)
(+ (ask self 'value)
(ask other 'value))))))))

san:

parameters: message
body: (cond ((eq? …

> (define san
(make-number 3))

> (ask san 'value)
3
> (ask san 'add

(make-number 4))
7

10CS150 Fall 2005: Lecture 22: Inheritance

Object-Oriented
Programming

11CS150 Fall 2005: Lecture 22: Inheritance

Simula

• Considered the first “object-oriented”
programming language

• Language designed for simulation by
Kristen Nygaard and Ole-Johan Dahl
(Norway, 1962)

• Had special syntax for defining classes
that packages state and procedures
together

12CS150 Fall 2005: Lecture 22: Inheritance

Counter in Simula

class counter;

integer count;

begin

procedure reset(); count := 0; end;

procedure next();

count := count + 1; end;

integer procedure how-many();

how-many := count; end;

end

3

13CS150 Fall 2005: Lecture 22: Inheritance

XEROX Palo Alto Research Center (PARC)

1970s:

• Bitmapped display

• Graphical User Interface

– Steve Jobs paid $1M to visit and PARC, and
returned to make Apple Lisa/Mac

• Ethernet

• First personal computer (Alto)

• PostScript Printers

• Object-Oriented Programming

14CS150 Fall 2005: Lecture 22: Inheritance

Dynabook, 1972
(Just a model)

“Don’t worry about what
anybody else is going to do…
The best way to predict the
future is to invent it. Really

smart people with
reasonable funding can do
just about anything that

doesn't violate too many of
Newton's Laws!”
— Alan Kay, 1971

15CS150 Fall 2005: Lecture 22: Inheritance

Dynabook 1972
• Tablet computer

• Intended as tool for learning

• Kay wanted children to be able to program
it also

• Hallway argument, Kay claims you could
define “the most powerful language in the
world in a page of code”

• Proof: Smalltalk

– Scheme is as powerful, but takes two pages

16CS150 Fall 2005: Lecture 22: Inheritance

BYTE
Magazine,
August
1981

17CS150 Fall 2005: Lecture 22: Inheritance

Smalltalk

• Everything is an object

• Objects communicate by sending and
receiving messages

• Objects have their own state (which may
contain other objects)

• How do you do 3 + 4?

send the object 3 the message “+ 4”

18CS150 Fall 2005: Lecture 22: Inheritance

Counter in Smalltalk

class name counter

instance variable names count

new count <- 0

next count <- count + 1

how-many ^ count

4

19CS150 Fall 2005: Lecture 22: Inheritance

Inheritance

20CS150 Fall 2005: Lecture 22: Inheritance

There are many kinds of numbers…

• Whole Numbers (0, 1, 2, …)

• Integers (-23, 73, 0, …)

• Fractions (1/2, 7/8, …)

• Floating Point (2.3, 0.0004, 3.14159)

• But they can’t all do the same things

– We can get the denominator of a fraction, but
not of an integer

21CS150 Fall 2005: Lecture 22: Inheritance

make-fraction
(define make-fraction
(lambda (numerator denominator)
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) (/ numerator denominator))
((eq? message 'add)
(lambda (self other)
(+ (ask self 'value) (ask other 'value)))

((eq? message ‘get-numerator)
(lambda (self) numerator))
((eq? message ‘get-denominator)
(lambda (self) denominator))
)))))

Same as in

make-number

Note: our add
method evaluates

to a number, not

a fraction object
(which would be

better).

22CS150 Fall 2005: Lecture 22: Inheritance

Why is redefining add a bad thing?

• Cut-and-paste is easy but…

• There could be lots of number methods
(subtract, multiply, print, etc.)

• Making the code bigger makes it harder to
understand

• If we fix a problem in the number add
method, we have to remember to fix the
copy in make-fraction also (and real,
complex, float, etc.)

23CS150 Fall 2005: Lecture 22: Inheritance

make-fraction
(define (make-fraction numer denom)

(let ((super (make-number #f)))
(lambda (message)
(cond
((eq? message 'value)
(lambda (self) (/ numer denom)))

((eq? message 'get-denominator)
(lambda (self) denom))

((eq? message 'get-numerator)
(lambda (self) numer))

(else
(super message))))))

24CS150 Fall 2005: Lecture 22: Inheritance

Using Fractions

> (define half (make-fraction 1 2))
> (ask half 'value)
1/2
> (ask half 'get-denominator)
2
> (ask half 'add (make-number 1))
3/2
> (ask half 'add half)
1

5

25CS150 Fall 2005: Lecture 22: Inheritance

> (trace ask)
> (trace eq?)
> (ask half 'add half)
|(ask #<procedure> add #<procedure>)

| (eq? add value)
| #f
| (eq? add get-denominator)
| #f
| (eq? add get-numerator)
| #f
| (eq? add value)
| #f
| (eq? add add)
| #t

| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
|1
1

26CS150 Fall 2005: Lecture 22: Inheritance

> (trace ask)
> (trace eq?)
> (ask half 'add half)
|(ask #<procedure> add #<procedure>)

| (eq? add value)
| #f
| (eq? add get-denominator)
| #f
| (eq? add get-numerator)
| #f
| (eq? add value)
| #f
| (eq? add add)
| #t

| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
| (ask #<procedure> value)
| |(eq? value value)
| |#t
| 1/2
|1
1

make-number
make-fraction

27CS150 Fall 2005: Lecture 22: Inheritance

Inheritance

Inheritance is using the definition of one
class to make another class

make-fraction uses make-number to
inherit the behaviors of number

28CS150 Fall 2005: Lecture 22: Inheritance

Number

Fraction

Note: people

sometimes draw
this different ways

• English

A Fraction is a kind of Number.

• C++

Fraction is a derived class whose base
class is Number

• Java

Fraction extends Number.

• Eiffel

Fraction inherits from Number.

• Beta

Fraction is a subpattern of Number.

• Smalltalk (72) (and Squeak 05)
Don’t have inheritance!

29CS150 Fall 2005: Lecture 22: Inheritance

CS 150:

Fraction inherits from Number.

Fraction is a subclass of Number.

The superclass of Fraction is
Number.

Number

Fraction

30CS150 Fall 2005: Lecture 22: Inheritance

Subtyping

• Subtyping is very important in statically
typed languages (like C, C++, C#, Java,
Pascal) where you have to explicitly
declare a type for all variables:

method Number add (Number n) { … }

• We won’t cover subtyping (although we
will talk more about types later)

Because of subtyping, either a Number or a Fraction

(subtype of Number) could be passed as the argument

6

31CS150 Fall 2005: Lecture 22: Inheritance

Who was the first
object-oriented
programmer?

32CS150 Fall 2005: Lecture 22: Inheritance

By the word operation, we mean any process which
alters the mutual relation of two or more things, be this
relation of what kind it may. This is the most general
definition, and would include all subjects in the
universe. Again, it might act upon other things besides
number, were objects found whose mutual fundamental
relations could be expressed by those of the abstract
science of operations, and which should be also
susceptible of adaptations to the action of the operating
notation and mechanism of the engine... Supposing, for
instance, that the fundamental relations of pitched
sounds in the science of harmony and of musical
composition were susceptible of such expression and
adaptations, the engine might compose elaborate and
scientific pieces of music of any degree of complexity or
extent. Ada, Countess of Lovelace, around 1830

33CS150 Fall 2005: Lecture 22: Inheritance

Charge

• PS5: Due Monday

• PS6: Out Monday

– Programming an adventure game using
objects and inheritance

