Class 25: Undecidable Problems

Menu

- Review:
 - Undecidability
 - Halting Problem
- How do we prove a problem is undecidable?
- What do we do when faced with an undecidable problem?

Problem Classes if \(P \neq NP \):

- Decidable
- \(P \)
- \(NP \)
- \(\Theta(n^3) \)
- \(\Theta(n) \)
- Smalleys
- NP-Complete
- 3SAT
- Undecidable

Halting Problem

Define a procedure \(\text{halts?} \) that takes a procedure and an input evaluates to \#t if the procedure would terminate on that input, and to \#f if it would not terminate.

\[
\text{(define (halts? procedure input) …)}
\]

Informal Proof

\[
\begin{align*}
\text{(define (contradict-halts x)} & \text{)} \\
\text{(if (halts? contradict-halts null)} & \text{)} \\
\text{(loop-forever)} & \text{#t)}
\end{align*}
\]

If contradict-halts halts, the if test is true and it evaluates to (loop-forever) - it doesn't halt!

If contradict-halts doesn't halt, the if test if false, and it evaluates to \#t. It halts!

Proof by Contradiction

1. Show \(X \) is nonsensical.
2. Show that if you have \(A \) and \(B \) you can make \(X \).
3. Show that you can make \(A \).
4. Therefore, \(B \) must not exist.

\[
\begin{align*}
X = \text{contradict-halts} \\
A = \text{a Scheme interpreter that follows the evaluation rules} \\
B = \text{halts?}
\end{align*}
\]
“Evaluates to 3” Problem
Input: A procedure P and input I
Output: true if evaluating $(P \ I)$ would result in 3; false otherwise.

Is “Evaluates to 3” decidable?

Undecidability Proof
Suppose we could define evaluates-to-3? that decides it. Then we could define halts?:

\[
\begin{align*}
\text{(define (halts? P I) } & \\
\text{ (if (evaluates-to-3? (begin (P I) 3)) } & \\
\t & \\
\text{ (begin (P I) 3)) } & \\
\text{ #t } & \\
\text{ #f) } & \\
\end{align*}
\]

Since it evaluates to 3, we know $(P I)$ must halt. (The only way it could not evaluate to 3, is if $(P I)$ doesn’t halt. (Note: assumes $(P I)$ cannot produce an error.)

Hello-World? Problem
Input: A procedure P and input I
Output: true if evaluating $(P \ I)$ would print out “Hello World!”; false otherwise.

Is Hello-World? decidable?

Undecidability Proof
Suppose we could define hello-world? that decides it. Then we could define halts?:

\[
\begin{align*}
\text{(define (halts? P I) } & \\
\text{ (if (hello-world? (begin ((remove-prints P) I) (print “Hello World!”)) } & \\
\text{ #t } & \\
\text{ #f)) } & \\
\end{align*}
\]

Proof by Contradiction
1. Show X is nonsensical.
2. Show that if you have A and B you can make X.
3. Show that you can make A.
4. Therefore, B must not exist.

$X = \text{halts}?$
$A = \text{a Scheme interpreter that follows the evaluation rules}$
$B = \text{hello-world}?$

From Paul Graham’s “Undergraduation”:
My friend Robert learned a lot by writing network software when he was an undergrad. One of his projects was to connect Harvard to the Arpanet; it had been one of the original nodes, but by 1984 the connection had died. Not only was this work not for a class, but because he spent all his time on it and neglected his studies, he was kicked out of school for a year. ...

... When Robert got kicked out of grad school for writing the Internet worm of 1988, I envied him enormously for finding a way out without the stigma of failure. ...

... It all evened out in the end, and now he’s a professor at MIT. But you’ll probably be happier if you don’t go to that extreme; it caused him a lot of worry at the time.

3 years of probation, 400 hours of community service, $10,000+$ fine
Morris Internet Worm (1988)
- $P = \text{fingerd}$
 - Program used to query user status
 - Worm also attacked other programs
- $I = \text{"nop" 400 pushl$68732f pushl$6e69622f movl sp,r10 pushl$0 pushl$0 pushl r10 pushl$3 movl sp,ap chmk $3b"}$
 - (is-worm? $P I$) should evaluate to $\#t$
- Worm infected several thousand computers (~10% of Internet in 1988)

Worm Detection Problem
Input: A program P and input I
Output: true if evaluating $(P I)$ would cause a remote computer to be "infected".

Virus Detection Problem
Input: A program P and input I
Output: true if evaluating $(P I)$ would cause a file on the host computer to be "infected".

Undecidability Proof
Suppose we could define is-worm? Then:
$(\text{define (halts? } P I) \quad (\text{if (is-worm? } (\text{begin ((deworm } P I) \text{) worm-code)})) \quad \#t$
Since it is a worm, we know worm-code was evaluated, and P must halt.
$\#f))$
The worm-code would not evaluate, so P must not halt.
Can we make deworm?

Conclusion?
- Anti-Virus programs cannot exist!
 - "The Art of Computer Virus Research and Defense" Peter Szor, Symantec

"Solving" Undecidable Problems
- No perfect solution exists:
 - Undecidable means there is no procedure that:
 1. Always gives the correct answer
 2. Always terminates
 - Must give up one of these to "solve" undecidable problems
 - Giving up $\#2$ is not acceptable in most cases
 - Must give up $\#1$

Actual is-virus? Programs
- Give the wrong answer sometimes
 - "False positive": say P is a virus when it isn't
 - "False negative": say P is safe when it is
- Database of known viruses: if P matches one of these, it is a virus
- Clever virus authors can make viruses that change each time they propagate
 - A/V software ~ finite-proof-finding
 - Emulate program for a limited number of steps; if it doesn't do anything bad, assume it is safe
Proof Recap

- If we had is-virus? we could define halts?
- We know halts? is undecidable
- Hence, we can't have is-virus?
- Thus, we know is-virus? is undecidable

How convincing is our Halting Problem proof?

(define (contradict-halts x)
 (if (halts? contradict-halts null)
 (loop-forever)
 #t))

If contradict-halts halts, the if test is true and it evaluates to (loop-forever) - it doesn't halt!
If contradict-halts doesn't halt, the if test if false, and it evaluates to #t. It halts!

This "proof" assumes Scheme exists and is consistent!

Charge

- Scheme is very complicated (requires more than 1 page to define):
 - Unlikely we could prove it is consistent
- To have a convincing proof, we need a simpler programming model in which we can write contradict-halts:
 - Next week: Turing's model