Class 28:
The
Meaning of
Truth

hand.html

CS150: Computer Science i
University of Virginia David Evans
Computer Science http://www.cs.virginia.edu/evans

Reduction (Uninteresting Rules)

Ay. M — Av. (M [y Jv])
where v does not occur in M.

M—->M
M —> N= PM — PN
M — N= MP — NP
M—N=kM—Ix. N
M—->NandN—>P=>M-—>P

A-calculus
Alonzo Church, 1940

(LISP was developed from A-calculus,
not the other way round.)

term = variable
| term term
| (term)

| A variable . term

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 2 ﬁmﬁ COITIPU(S!’ Sctegce

B-Reduction
(the source of all computation)

(Ax. M)N > M [x 2N]

- P
€S150 Fall 2005: Lecture 28: Lambda Calculus 3 il Comput‘e]r Scne{;ce

- y
€S150 Fall 2005: Lecture 28: Lambda Calculus 4 fim Comput‘e]r Scne{;ce

Evaluating Lambda Expressions

e redex. Term of the form (Ax. M)N

Something that can be B-reduced
e An expression is in normal form if it
contains no redexes (redices).
e To evaluate a lambda expression, keep
doing reductions until you get to normal
form.

Recall Apply in Scheme

“To apply a procedure to a list of
arguments, evaluate the procedure in a
new environment that binds the formal
parameters of the procedure to the
arguments it is applied to.”

* We've replaced environments with
substitution.

« We've replaced eval with reduction.

CS150 Fall 2005: Lecture 28: Lambda Calculus

= -
s_fiilj Computer Science,

CS150 Fall 2005: Lecture 28: Lambda Calculus

= -
6 iy Computer Science |

Some Simple Functions

I=Axx
C=A\xyyx
Abbreviation for Ax.(Ay. yx)
CII = (Ax.(Ay. yx)) (Ax.x) (Ax.x)
—g Ay. y (Ax.x)) (Ax.x)
—p Ax.x (Ax.x)
—p Axx
=1

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 7 ﬁmﬁ COITIPU}FS!' Sctegce

Alyssa P. Hacker’s Answer

AL (A xf (ex) (A x. f (xx)))) (Az.2)
—p (Ax.(Az.2)(xx)) (A x. (Az.2)(xx))
—p (Az.2) (A x.(Az.2)(xx)) (A x.(Az.2)(xx))
—p (Ax.(Az.2)(xx)) (A x.(Az.2)(xx))
—p (Az.2) (A x.(Az.2)(xx)) (A x.(Az.2)(xx))
—p (Ax.(Az.2)(xx)) (A x.(Az.2)(xx))

_>[3

Example

A fo (A x.f (xx) (A x. f(xx)))

Try this one at home...

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 8 ﬁmﬁ COITIPU}FS!' Sctegce

Ben Bitdiddle’s Answer

A fo (A xof (xx)) A x. f (x0)))) (Az.2)
—p Ax.(Az.2)(xx) (A x. (Az.2)(xx))
—p (Ax.xx) (Ax.(Az.2)(xx))
—p (Ax.xx) (Ax.xx)
—p (Ax.xx) (hx.xx)
—g

- .
€S150 Fall 2005: Lecture 28: Lambda Calculus 10 i Computer Science
I} e Gy o Viscrn

- .
€S150 Fall 2005: Lecture 28: Lambda Calculus 9 il Computer Science
LI} e Gy o Viscr

Be Very Afraid!

¢ Some A-calculus terms can be B-reduced
forever!

¢ The order in which you choose to do the
reductions might change the result!

Take on Faith (until CS655)

» All ways of choosing reductions that reduce
a lambda expression to normal form will
produce the same normal form (but some
might never produce a normal form).

o If we always apply the outermost lambda
first, we will find the normal form if there is
one.

— This is normal order reduction — corresponds to
normal order (lazy) evaluation

CS150 Fall 2005: Lecture 28: Lambda Calculus

= -
11 gimj Computer Science |

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 12 ﬁmﬁ COITIPU}FS!' Sctegce

Universal Language

¢ Is Lambda Calculus a wniversal language?
— Can we compute any computable algorithm
using Lambda Calculus?
e To prove it isn't:
— Find some Turing Machine that cannot be
simulated with Lambda Calculus
e To prove it is:
— Show you can simulate every Turing Machine
using Lambda Calculus

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 13 ﬁmﬁ COmPUNt‘Eyl' SCle{,lCe

Simulating Computation

z]z]z]z]z]z]z]z] 2] 22z 2z 2] 2]z [z] 2] 2]

e Lambda expression

L= corresponds to a computation:
- e -
: input on the tape is
! transformed into a lambda
[expression
Finite State Machine .
¢ Normal form is that value of

that computation: output is
the normal form

* How do we simulate the FSM?

-
CS150 Fall 2005: Lecture 28: Lambda Calculus 15 il Computg

Making “Primitives”
from Only Glue (1)

Simulating Every Turing
Machine

¢ A Universal Turing Machine can simulate
every Turing Machine

¢ So, to show Lambda Calculus can simulate
every Turing Machine, all we need to do is
show it can simulate a Universal Turing
Machine

CS150 Fall 2005: Lecture 28: Lambda Calculus

= -
14_fimj Computer Science |

Simulating Computation

z]z]z]z]z]z]z]z] 2] 2]z 22z 2] 2]z 2] 2] 2]

L=l = Read/Write Infinite Tape
; G Mutable Lists
=] Finite State Machine
<& Numbers to keep track of state

Finite State Machine | Processing
Way of making decisions (if)
Way to keep going

—
16 iy Computer Sc

CS150 Fall 2005: Lecture 28: Lambda Calculus

In search of the truth?

e What does true mean?

¢ True is something that when used as the
first operand of if, makes the value of the
if the value of its second operand:

ifTMN—>M

CS150 Fall 2005: Lecture 28: Lambda Calculus

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 17 ﬁmﬁ COmPUNt‘Eyl' Sctegce

= -
18_fimj Computer Science |

Don't search for T, search for if

T =Ax (Ay. x)
= Axy. x

F=Xx A y.y)

if = Apca . pca

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 19 ﬁmﬁ COITIPU}FS!' Sctegce

and and or?

and = Ax (Ay. if x y F))
or=2Ax (Ay.if x T y))

- .
€S150 Fall 2005: Lecture 28: Lambda Calculus 21 i Computer Science
LI} e Gy o Viscr

Charge

¢ PS6 Due Monday
e Start thinking about web application ideas
for PS8
—If you find a team and idea quickly (by Nov 2),
you can negotiate what you need to do for PS7
o Week after: we will finish this proof

—How to make the other things we need to
simulate a Turing machine using only Lambda
Calculus

Finding the Truth

T=kx.(Ay. x)
F=Ax.(\y.y)
if=Ap. (Ac. (\a. pca)))
ifTMN
((A\pca . pca) (Axy. x)) M N
—p (Aca. (x.(Ay. x)) ca)) M N
-5 (hy. M) N =, M

Is the if necessary?

- .
CS150 Fall 2005: Lecture 28: Lambda Calculus 20 ﬁmﬁ COITIPU}FS!' Sctegce

Lambda Calculus is a Universal Computer?

z]z]z]z]z]z]z]z] 2] 2]z 22z 2] 2]z 2] 2] 2]

|
o)
- = ;ReadNVrite Infinite Tape
? Mutable Lists
= o) « Finite State Machine
inite State Machine
? Numbers to keep track of state

* Processing
v Way of making decisions (if)
? Way to keep going

CS150 Fall 2005: Lecture 28: Lambda Calculus

= -
22 iy Computer Science

CS150 Fall 2005: Lecture 28: Lambda Calculus

= -
23 i Computer Science,

