
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 3:
Rules of
Evaluation

2CS150 Fall 2005: Lecture 3: Rules of Evaluation

Menu

• Language Elements

• Why don’t we just program computers
using English?

• Evaluation

• Procedures

3CS150 Fall 2005: Lecture 3: Rules of Evaluation

Are there any non-recursive natural
languages? What would happen to a
society that spoke one?

Not for humans at least.

They would run out of original things to say.

Chimps and Dolphins are able to learn non-

recursive “languages” (some linguists argue
they are not really “languages”), but only

humans can learn recursive languages.

4CS150 Fall 2005: Lecture 3: Rules of Evaluation

Running out of Ideas

“Its all been said before.”

Eventually true for a non-recursive language.

Never true for a recursive language.

There is always something original left to
say!

5CS150 Fall 2005: Lecture 3: Rules of Evaluation

Language Elements
When learning a foreign language, which
elements are hardest to learn?

• Primitives: lots of them, and hard to learn real meaning

• Means of Combination

– Complex, but, all natural languages have similar ones [Chomsky]
SOV (45% of all languages) Sentence ::= Subject Object Verb (Korean)

SVO (42%) Sentence ::= Subject Verb Object

VSO (9%) Sentence ::= Verb Subject Object (Welsh)
“Lladdodd y ddraig y dyn.” (Killed the dragon the man.)

OSV (<1%): Tobati (New Guinea)

Schemish: Expression ::= (Verb Object)

• Means of Abstraction: few of these, but tricky to learn differences
across languages

English: I, we

Tok Pisin (Papua New Guinea): mi (I), mitupela (he/she and I), mitripela
(both of them and I), mipela (all of them and I), yumitupela (you and I),
yumitripela (both of you and I), yumipela (all of you and I)

9CS150 Fall 2005: Lecture 3: Rules of Evaluation

Declarations, Classes

Expressions, Statements

Program Structure

Standard Procedures

Primitive expressions

Identifiers, numerals

Definitions

Expressions

Program structure

Standard Procedures

Primitive expressions

Identifiers, numerals

776 pages total (includes no

formal specification or
examples)

48 pages total (includes

formal specification and
examples)

173½Means of
Abstraction

197

35

2

2
Means of
Combination

356

30

10

18

2

1
Primitives

Pages in C++ Language

Specification (1998)

Pages in Revised5 Report
on the Algorithmic
Language Scheme

C++ Core language issues list has 529 items!

2

10CS150 Fall 2005: Lecture 3: Rules of Evaluation

Pronouns

Grammar Rules

English Grammar
for Dummies Book

Morphemes

Words in Oxford

English Dictionary

Definitions

Expressions

Program structure

Standard Procedures

Primitive expressions

Identifiers, numerals

48 pages total (includes
formal specification and

examples)

~20½Means of
Abstraction

100s (?)

384 pages

2

2
Means of
Combination

?

500,000

18

2

1

Primitives

English
Pages in Revised5 Report
on the Algorithmic
Language Scheme

12CS150 Fall 2005: Lecture 3: Rules of Evaluation

Why don’t we just program
computers using English?

• Too hard and complex
Non-native English speakers don’t need convincing.
The rest of you have spent your whole life learning
English (and first 5 years of your life doing little else)
and still don’t know useful words like
floccipoccinihilipilification! There are thoughts that
even native speakers find it hard to express.

By the end of today you will know enough Scheme
(nearly the entire language) to express and understand
every computation. By PS7, you will know enough to
completely and precisely describe Scheme in terms of
itself (try doing that in English!)

13CS150 Fall 2005: Lecture 3: Rules of Evaluation

Why don’t we just program
computers using English?

• Not concise enough

English:
To find the maximum of two numbers, compare
them. If the first number is greater than the
second number, the maximum is the first
number. Otherwise, the maximum is the second
number.

Scheme:
(define (max a b) (if (> a b) a b))

14CS150 Fall 2005: Lecture 3: Rules of Evaluation

Why don’t we just program
computers using English?

• Limited means of abstraction

There are only a few pronouns: he, she, it, they, these, …
(English doesn’t even have a gender-neutral
pronoun for a person!)

Only Webster and Oxford can make up new ones.

define allows any programmer to make up as
many pronouns as she wants, and use them to
represent anything.

15CS150 Fall 2005: Lecture 3: Rules of Evaluation

Why don’t we just program
computers using English?

• Mapping between surface forms and
meanings are ambiguous and imprecise
Would you rather be paid biweekly or every week?

The exact meaning(s) of every Scheme expression is
determined by simple, unambiguous rules we will
learn today (and refine later in the course).

16CS150 Fall 2005: Lecture 3: Rules of Evaluation

Essential Scheme
Expression ::= (Expression1 Expression*)

Expression ::= (if Expression1
Expression2
Expression3)

Expression ::= (define name Expression)

Expression ::= Primitive

Primitive ::= number

Primitive ::= + | - | * | …

Primitive ::= …

Grammar is clear, just
follow the replacement
rules. But what does it
all mean?

3

Evaluation

18CS150 Fall 2005: Lecture 3: Rules of Evaluation

Expressions and Values

• (Almost) every expression has a value

– Have you seen any expressions that don’t
have values?

• When an expression with a value is
evaluated, its value is produced

19CS150 Fall 2005: Lecture 3: Rules of Evaluation

Evaluation Rule 1: Primitives

If the expression is a primitive,
it is self-evaluating.

> 2
2
> #t
#t
> +
#<primitive:+>

20CS150 Fall 2005: Lecture 3: Rules of Evaluation

Evaluation Rule 2: Names

If the expression is a name, it
evaluates to the value associated with
that name.

> (define two 2)
> two
2

21CS150 Fall 2005: Lecture 3: Rules of Evaluation

Evaluation Rule 3: Application

3. If the expression is an application:

a) Evaluate all the subexpressions of the
combination (in any order)

b) Apply the value of the first subexpression to
the values of all the other subexpressions.

(expression0 expression1 expression2 …)

22CS150 Fall 2005: Lecture 3: Rules of Evaluation

Rules for Application

1. If the procedure to apply is a primitive,
just do it.

2. If the procedure is a compound
procedure, evaluate the body of the
procedure with each formal parameter
replaced by the corresponding actual
argument expression value.

4

23CS150 Fall 2005: Lecture 3: Rules of Evaluation

Making Procedures

• lambda means “make a procedure”

Expression ::=

(lambda (Parameters) Expression)

Parameters ::=

Parameters ::= Name Parameters

24CS150 Fall 2005: Lecture 3: Rules of Evaluation

Lambda Example: Tautology Function

(lambda
()
#t)

> ((lambda () #t) 150)
#<procedure>: expects no arguments, given 1: 150
> ((lambda () #t))
#t
> ((lambda (x) x) 150)
150

make a procedure
with no parameters
with body #t

25CS150 Fall 2005: Lecture 3: Rules of Evaluation

You’ve Already Used Lambda!

(define (closer-color?

sample color1 color2)

Expr)

is a shortcut for:

(define closer-color?

(lambda (sample color1 color2)

Expr))

26CS150 Fall 2005: Lecture 3: Rules of Evaluation

EvalEval

ApplyApply

Eval and Apply
are defined in
terms of each
other.

Without Eval,
there would be
no Apply,
Without Apply
there would be
no Eval!

27CS150 Fall 2005: Lecture 3: Rules of Evaluation

All of Scheme

• Once you understand Eval and Apply, you
can understand all Scheme programs!

• Except:
– We have special Eval rules for special forms
(like if)

Evaluation Rule 4: If it is a special form, do
something special.

28CS150 Fall 2005: Lecture 3: Rules of Evaluation

Evaluating Special Forms

• Eval 4-if. If the expression is

(if Expression0 Expression1 Expression2)

evaluate Expression0. If it evaluates to #f, the
value of the if expression is the value of
Expression2. Otherwise, the value of the if
expression is the value of Expression1.

• Eval 4-lambda. Lambda expressions self-
evaluate. (Do not do anything until it is
applied.)

5

29CS150 Fall 2005: Lecture 3: Rules of Evaluation

More Special Forms

• Eval 4-define. If the expression is
(define Name Expression)

associate the Expression with Name.

• Eval 4-begin. If the expression is
(begin Expression0 Expression1 …

Expressionk)

evaluate all the sub-expressions. The
value of the begin expression is the value
of Expressionk.

30CS150 Fall 2005: Lecture 3: Rules of Evaluation

Scheme
Expression ::= Primitive

Eval 1: If the expression is a primitive, it is self-evaluating.

Expression ::= Name
Eval 2: If the expression is a name, it evaluates to the value

associated with that name.

Expression ::= (Expression ExpressionList)
Eval 3: If the expression is an application:

(a) Evaluate all the subexpressions (in any order)

(b) Apply the value of the first subexpression to the values of
all the other subexpressions.

ExpressionList ::=
ExpressionList ::= Expression ExpressionList

31CS150 Fall 2005: Lecture 3: Rules of Evaluation

Special Forms
Expression ::= (lambda (Parameters) Expression)

Eval 4-lambda. Lambda expressions self-evaluate.

Parameters ::=
Parameters ::= Name Parameters
Expression ::= (define Name Expression)

Eval 4-define. If the expression is (define Name Expression)
associate the Expression with Name.

Expression ::= (if Expression0 Expression1 Expression2)
Eval 4-if. Evaluate Expression0. If it evaluates to #f, the value of the if

expression is the value of Expression2. Otherwise, the value of
the if expression is the value of Expression1.

Expression ::= (begin ExpressionList Expression)
Eval 4-begin. Evaluate all the sub-expressions. The value of the begin

expression is the value of Expression.

32CS150 Fall 2005: Lecture 3: Rules of Evaluation

Now, you know all of
Scheme!

(Except for 3 more special forms you
will learn for PS5.)

33CS150 Fall 2005: Lecture 3: Rules of Evaluation

Charge

• PS1 Due Wednesday

–Staffed Lab hours:

today, 3:30-5pm

Tuesday, 4-5:30pm

• Reading for Friday: SICP, 1.2

• Reading for Monday: GEB, Ch 5

