
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 9:
Of On and Off
Grounds
Sorting

Coffee Bean Sorting in Guatemala

2CS150 Fall 2005: Lecture 9: Sorting

Menu

•PS2

•Sorting

• PS3

3CS150 Fall 2005: Lecture 9: Sorting

Problem Sets

• Not just meant to review stuff you should
already know

– Get you to explore new ideas

– Motivate what is coming up in the class

• The main point of the PSs is learning, not
evaluation
– Don’t give up if you can’t find the answer in the
book

– Discuss with other students

4CS150 Fall 2005: Lecture 9: Sorting

PS2: Question 3
Why is

(define (higher-card? card1 card2)

(> (card-rank card1) (card-rank card2)

better than

(define (higher-card? card1 card2)

(> (car card1) (car card2))

?
In this class, we won’t worry too much about designing programs
with good abstractions, since the programs we are dealing with are

fairly small. For large programs, good abstractions are essential.
That’s what most of CS201(J) is about.

5CS150 Fall 2005: Lecture 9: Sorting

PS2: Question 8, 9

• Predict how long it will take

• Identify ways to make it faster

Much of this week, and later classes will be focused
on how computer scientists predict how long
programs will take, and on how to make them faster.

6CS150 Fall 2005: Lecture 9: Sorting

Can we do better?

(define (find-best-hand hole-cards community-cards)
(car (sort higher-hand?

(possible-hands hole-cards
community-cards))))

2

7CS150 Fall 2005: Lecture 9: Sorting

find-best-hand

(define (find-best-hand lst)
(if (null? (cdr lst))
(car lst)
(let ((rest-best (find-best-hand (cdr lst))))
(if (higher-hand? (car lst) rest-best)
(car lst)
rest-best))))

8CS150 Fall 2005: Lecture 9: Sorting

find-best-hand

(define (find-best-hand lst)
(insertl
(lambda (hand1 hand2)
(if (higher-hand? hand1 hand2) hand1 hand2))
(cdr lst) ;; already used the car as stopval
(car lst)))

(define (insertl lst f stopval)
(if (null? lst)

stopval
(f (car lst) (insertl (cdr lst) f stopval))))

9CS150 Fall 2005: Lecture 9: Sorting

find-best

(define (find-best cf lst)
(insertl
(lambda (c1 c2)
(if (cf c1 c2) c1 c2))

(cdr lst)
(car lst)))

10CS150 Fall 2005: Lecture 9: Sorting

(define (find-best cf lst)
(insertl
(lambda (c1 c2) (if (cf c1 c2) c1 c2))
(cdr lst)
(car lst)))

(define (find-best-hand lst)

(find-best higher-hand? lst))

11CS150 Fall 2005: Lecture 9: Sorting

How much work is
find-best?

12CS150 Fall 2005: Lecture 9: Sorting

Why not just time it?

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1
9
6
9

1
9
7
1

1
9
7
2

1
9
7
4

1
9
7
5

1
9
7
7

1
9
7
8

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
6

1
9
8
7

1
9
8
9

1
9
9
0

1
9
9
2

1
9
9
3

1
9
9
5

1
9
9
6

1
9
9
8

1
9
9
9

2
0
0
1

2
0
0
2

Moore’s Law: computing power
(used to) double every 18 months!

3

13CS150 Fall 2005: Lecture 9: Sorting

How much work is find-best?

• Work to evaluate (find-best f lst)?

– Evaluate (insertl (lambda (c1 c2) …) lst)

– Evaluate lst

– Evaluate (car lst)

(define (find-best cf lst)
(insertl
(lambda (c1 c2)
(if (cf c1 c2) c1 c2))
lst
(car lst)))

These don’t depend on the length
of the list, so we don’t care about

them.

14CS150 Fall 2005: Lecture 9: Sorting

Work to evaluate insertl

• How many times do we evaluate f for a
list of length n?

(define (insertl f lst stopval)

(if (null? lst)
stopval

(f (car lst) (insertl f (cdr lst) stopval))))

n

insertl is Θ(n) “Theta n”
If we double the length of the list, we amount of work
required approximately doubles.

(We will see a more formal definition of Θ next class, and a
more formal definition of “Amount of work” in November.)

15CS150 Fall 2005: Lecture 9: Sorting

Simple Sorting

• We know how to find-best

• How do we sort?

• Use (find-best lst) to find the best

• Remove it from the list

• Repeat until the list is empty

16CS150 Fall 2005: Lecture 9: Sorting

Simple Sort

(define (sort cf lst)
(if (null? lst) lst
(let ((best (find-best cf lst)))
(cons
best
(sort cf

(delete lst best))))))

17CS150 Fall 2005: Lecture 9: Sorting

Sorting Hands

(define (sort-hands lst)

(sort higher-hand? lst))

18CS150 Fall 2005: Lecture 9: Sorting

Sorting

• How much work is sort?

• We measure work using orders of
growth: How does work grow with
problem size?

(define (sort cf lst)

(if (null? lst) lst
(let ((most (find-best cf lst)))

(cons

most
(sort cf

(delete lst best))))))

(define (find-best cf lst)
(insertl

(lambda (c1 c2)

(if (cf c1 c2) c1 c2))
lst

(car lst)))

4

19CS150 Fall 2005: Lecture 9: Sorting

Sorting

• What grows?

–n = the number of elements in lst

• How much work are the pieces?
find-best is Θ(n) delete is Θ(n)

• How many times does sort evaluate
find-best and delete?

(define (sort cf lst)
(if (null? lst) lst
(let ((best (find-best cf lst)))
(cons best
(sort cf (delete lst best))))))

20CS150 Fall 2005: Lecture 9: Sorting

Sorting

• n = the number of elements in lst

• find-most is Θ(n) delete is Θ(n)

• How many times does sort evaluate
find-most and delete? n

(define (sort cf lst)
(if (null? lst) lst
(let ((best (find-best cf lst)))
(cons best
(sort cf (delete lst best))))))

sort is Θ(n2)
If we double the length of the list, the amount of
work approximately quadruples.

21CS150 Fall 2005: Lecture 9: Sorting

Timing Sort
> (time (sort < (revintsto 100)))
cpu time: 20 real time: 20 gc time: 0
> (time (sort < (revintsto 200)))
cpu time: 80 real time: 80 gc time: 0
> (time (sort < (revintsto 400)))
cpu time: 311 real time: 311 gc time: 0
> (time (sort < (revintsto 800)))
cpu time: 1362 real time: 1362 gc time: 0
> (time (sort < (revintsto 1600)))
cpu time: 6650 real time: 6650 gc time: 0

22CS150 Fall 2005: Lecture 9: Sorting

Θ(n2)

0

5000

10000

15000

20000

25000

30000

35000

0 1000 2000 3000

= n2/500

measured
times

23CS150 Fall 2005: Lecture 9: Sorting

Is our sort good enough?

Takes over 1 second to sort 1000-length
list. How long would it take to sort 1
million items?

Θ(n2)
1s = time to sort 1000

4s ~ time to sort 2000

1M is 1000 * 1000

Sorting time is n2

so, sorting 1000 times as many items will take 10002 times as long
= 1 million seconds ~ 11 days

Note: there are 800 Million VISA cards in circulation.

It would take 20,000 years to process a VISA transaction at this rate.

24CS150 Fall 2005: Lecture 9: Sorting

PS3:
Lindenmayer System Fractals

5

25CS150 Fall 2005: Lecture 9: Sorting

L-Systems

CommandSequence ::= (CommandList)

CommandList ::= Command CommandList

CommandList ::=

Command ::= F

Command ::= RAngle

Command ::= OCommandSequence

26CS150 Fall 2005: Lecture 9: Sorting

L-System
Rewriting

Start: (F)

Rewrite Rule:

F → (F O(R30 F) F O(R-60 F) F)

Work like BNF replacement rules, except
replace all instances at once!

Why is this a better model for biological systems?

CommandSequence ::= (CommandList)

CommandList ::= Command CommandList

CommandList ::=

Command ::= F

Command ::= RAngle

Command ::= OCommandSequence

Level 0

(F)

Level 1

F →→→→ (F O(R30 F) F O(R-60 F) F)Start: (F)

(F O(R30 F) F O(R-60 F) F)

28CS150 Fall 2005: Lecture 9: Sorting

Level 2 Level 3

29CS150 Fall 2005: Lecture 9: Sorting

The Great

Lambda Tree
of Ultimate

Knowledge
and Infinite

Power

30CS150 Fall 2005: Lecture 9: Sorting

CS Logo, Lincoln Hamilton

and Dan Nguyen

Proud Peacock, Marija Cvijetic and
Raquel Johnathan

Pink Buds by Kate Morandi
and Erika Vogel T

ie
 D

y
e

b
y
 B

ill In
g

ra
m

The Fern of Serenity and Fractal
Frustration, Nicole Numbers and
Jon Carter

Spirograph by Leah Nylen

6

31CS150 Fall 2005: Lecture 9: Sorting

Charge

• Wednesday: faster ways of sorting

• Read Tyson’s essay before Friday’s class

– How does it relate to θ (n2)

– How does it relate to grade inflation

• PS3 due Monday, Sept 19: lots more code
for you to write than PS2

