
Chapter 12

Interpreters

The tools we use have a profound (and devious!) influence on our thinking habits, and,

therefore, on our thinking abilities.

Edsger Dijkstra, How do we tell truths that might hurt?

An interpreter is just a program. As input, it takes a specification of a program

in some language. As output, it produces the output of the input program. By

designing a new interpreter, we can invent a new language.

Languages are powerful tools for thinking. Different languages encourage dif-

ferent ways of thinking and lead to different thoughts. Hence, inventing new

languages is a powerful way for solving problems. We can solve a problem by de-

signing a language in which it is easy to express a solution, and then implementing

an interpreter for that language.

In this chapter, we explore how to implement an interpreter. We will also introduce

the Python programming language, and describe an interpreter that implements a

subset of the Scheme language. Implementing an interpreter further blurs the

line between data and programs, that we first crossed in Chapter 3 by passing

procedures as parameters and returning new procedures as results. Now that we

are implementing an interpreter, all programs as just data input for our interpreter

program. The meaning of the program is determined by the interpreter.

12-1

12-2 CHAPTER 12. INTERPRETERS

12.1 Building Languages

To implement an interpreter for a given target language we need to:

• Implement a parser that takes as input a string representation of a program

in the target language and produces a structural parse of the input program.

The parser should break the input string into its language components, and

form a parse tree data structure that represents the input text in a structural

way.

• Implement an evaluator that takes as input a structural parse of an input

program, and evaluates that program. The evaluator should implement the

target language’s evaluation rules.

Section 12.2 describes our parser implementation. Section 12.3 describes the im-

plementation of our evaluator. The next subsection introduces the target language

for our interpreter. The following subsection introduces Python, the language we

will use to implement our interpreter, and for most of the rest of the programs in

this book.

12.1.1 Charme

Our target language is a simple subset of Scheme we will call Charme.1

The Charme language we will implement is simple, but powerful enough to ex-

press all computations (that is, it is a universal programming language). Its eval-

uation rules are a subset of the Scheme evaluation rules. It includes the applica-

tion expression, conditional expression, lambda expression, name expression, and

definitions. It supports integral numbers, and provides the basic arithmetic and

comparison primitives with the same meanings as they have in Scheme.

1The original name of Scheme was “Schemer”, a successor to the languages “Planner” and

“Conniver”. Because the computer on which “Schemer” was implemented only allowed six-letter

file names, its name was shortened to “Scheme”. In that spirit, we name our snake-charming

language, “Charmer” and shorten it to Charme. Depending on the programmer’s state of mind, the

language name can be pronounced either “charm” or “char me”.

12.2. PARSER 12-3

12.1.2 Python

We could implement our Charme interpreter using Scheme, but Python2 is a pop-

ular programming language initially designed by Guido van Rossum in 1991.

Python is widely used to develop dynamic web applications and as a scripting

language for applications (including the game Civilization IV). Python was used

to manage special effects production for Star Wars: Episode II, and is used exten-

sively at Google, reddit.com, and NASA.3

Like Scheme, Python is a universal programming language. We will define this

more formally in Chapter ??, but for now, think of it as meaning that both Python

and Scheme and express all computations. There is no Scheme program that does

not have an equivalent Python program, and every Python program has an equiv-

alent Scheme program. One piece of evidence that every Scheme program has an

equivalent Python program is the interpreter we describe in this chapter. Since

we can implement a Scheme interpreter in Python, we know we can express ev-

ery computation that can be expressed by a Scheme program with an equivalent

Python program (that is, the Scheme interpreter implemented in Python with the

original Scheme program as input).

The grammar for Python is quite different from the Scheme grammar, so Python

programs look very different from Scheme programs. In most respects, however,

the evaluation rules are quite similar to the evaluation rules for Scheme. This sec-

tion does not describe the entire Python language, but instead introduces what we

need as we need it. See the Python guide for a more comprehensive introduction

to the Python programming language.

12.2 Parser

The parser takes as input a Charme program string, and produces as output a

Python list that encodes the structure of the input program. Charme’s syntax

makes implementing the parser fairly simple, since the grammar rules for Scheme

are very simple. It is not necessary to build a complex parser, since we can break

an expression into its components just by using the parentheses and whitespace.

2The name Python alludes to Monty Python’s Flying Circus.
3See http://python.org/Quotes.html for descriptions of Python uses.

12-4 CHAPTER 12. INTERPRETERS

The parser needs to balance the open and close parentheses that enclose expres-

sions. The parsed program can be represented as a list.

For example, if the input string is “(define square (lambda (x) (* x x)))” the output

of the parser should be:

[’define’,

’square’,

[’lambda’,

[’x’],

[’*’, ’x’, ’x’]

]

]

Python provides a list datatype similar to the Scheme list datatype. Lists are de-

noted using square brackets, [and]. Hence, the output parse structure is a list

containing three elements, the first is the keyword ’define’, the second is the

name ’square’, and the third is a list containing three elements, [’lambda’,

[’x’], [’*’, ’x’, ’x’]], the third of which is itself a list containing

three elements.

We divide the job of parsing into two procedures that are combined to solve the

problem of transforming an input string into a list describing the input program’s

structure. The first part is the scanner. A scanner tokenizes an input string. Its

input is the input string in the target programming language, and its output is a list

of the tokens in that string.

A token is an indivisible syntactic unit. For example, in the example above the

tokens are (, define, square, (, lambda, (, x,), (, *, x, x,),), and).

The tokens are separated by whitespace (spaces, tabs, and newlines). The left and

right parentheses are tokens by themselves.

12.2.1 Tokenizing

The tokenize procedure below takes as input a string s in the Charme target

language, and produces as output a list of the tokens in s. We describe it in detail

below, but attempt to understand it on your own first.

12.2. PARSER 12-5

def tokenize(s):

current = ’’

tokens = []

for c in s:

if c.isspace():

if len(current) > 0:

tokens.append(current)

current = ’’

elif c in ’()’:

if len(current) > 0:

tokens.append(current)

current = ’’

tokens.append(c)

else:

current = current + c

if len(current) > 0:

tokens.append(current)

return tokens

Unlike in Scheme, the whitespace (such as new lines) has meaning in Python.

Statements cannot be separated into multiple lines, and only one statement may

appear on a single line. Indentation within a line also matters. Instead of using

parentheses to provide code structure, Python uses the indentation to group state-

ments into blocks. The Python interpreter will report an error if the indentation of

the code does not match its structure.

12.2.2 Statements and Expressions

Whereas Scheme programs were composed of expressions and definitions, Python

programs are mostly sequences of statements. Unlike expressions which (mostly)

evaluate to values, a statement does not have a value. The emphasis on state-

ments reflects (and impacts) the style of programming used with Python. It is

more imperative than that used with Scheme: instead of composing expressions

in ways that pass the result of one expression as an operand to the next expres-

sion, Python programs consist of a sequence of statements, each of which alters

the state in some way towards reaching the goal state. Nevertheless, it is possible

12-6 CHAPTER 12. INTERPRETERS

(but not recommended) to program in Scheme using an imperative style (empha-

sizing begin and set! expressions), and it is possible (but not recommended)

to program in Python using a functional style (emphasizing procedure applications

and eschewing assignment statement).

Defining a procedure in Python is similar to defining a procedure in Scheme, ex-

cept the grammar rule is different:

ProcedureDefinition ::⇒ def Name (Parameters) : Block

Parameters ::⇒ ε

Parameters ::⇒ SomeParameters

SomeParameters ::⇒ Name

SomeParameters ::⇒ Name , SomeParameters

Block ::⇒ <newline> indented(Statements)

Statements ::⇒ Statement <newline> MoreStatements

MoreStatements ::⇒ Statement <newline> MoreStatements

MoreStatements ::⇒ ε

Since whitespace matters in Python, we include newlines (<newline>) and in-

dentation in our grammar. We use

indented(elements)

to indicate that the elements are indented. For example, the rule for Block is a

newline, followed by one or more statements. The statements are all indented

one level inside the block’s indentation. This means it is clear when the block’s

statements end because the next line is not indented to the same level.

The evaluation rule for a procedure definition is similar to the rule for the Scheme

procedure definition. It defines the given name as a procedure that takes the pa-

rameters as it inputs and has the body given by the statement block.

So, our procedure definition

def tokenize(s):

...

12.2. PARSER 12-7

defines a procedure named tokenize that takes a single parameter, s.

The body of the procedure uses several different types of Python statements. Fol-

lowing Python’s more imperative style, five of the 12 statements are assignment

statements:

Statement ::⇒ AssignmentStatement

AssignmentStatement ::⇒ Target = Expression

Target ::⇒ Name

For now, we use only a Name as the left side of an assignment, but since other

constructs can appear on the left side of an assignment statement, we introduce

the nonterminal Target for which additional rules can be defined to encompass

other possible assignees.

The evaluation rule for an assignment statement is similar to Scheme’s evalua-

tion rule for set expressions: the meaning of x = e in Python is similar to the

meaning of (set! x e) in Scheme, except that the target Name need not exist

before the assignment.

Evaluation Rule: Assignment. To evaluate an assignment statement,

evaluate the expression, and assign the value of the expression to the

place identified by the target. If no such place exists, create a new

place with that name.

Like Scheme, Python supports many different kinds of expressions. The tokenize

procedure uses literals, primitives, applications, arithmetic, and comparison ex-

pressions.

Since Python does not use parentheses to group expressions, the grammar pro-

vides the grouping by breaking down expression in several steps. This defines

an order of precedence for parsing expressions. If a complex expression includes

many expressions, the grammar specifies how they will be grouped. For example,

consider the expression 3+4*5. In Scheme, the expressions (+ 3 (* 4 5))

and (* (+ 3 4) 5) are clearly different and the parentheses group the subex-

pressions. The meaning of the Python expression 3+4*5 is (+ 3 (* 4 5)),

that is, it evaluates to 23. The expression 4*5+3 also evaluates to 23.

12-8 CHAPTER 12. INTERPRETERS

This makes the Python grammar rules more complex since they must deal with

* and + differently, but it makes the meaning of Python expressions match our

familiar mathematical interpretation, without needing all the parentheses we need

in Scheme expressions. The way this is done is by defining the grammar rules so

an AddExpression can contain a MultExpression as one of its subexpressions, but

a MultExpression cannot contain an AddExpression. This makes the multiplica-

tion operator have higher precedence than the addition operator. If an expression

contains both + and * operators, the * operator attaches to its operands first. The

replacement rules that happen first have lower precedence, since their components

must be built from the remaining pieces.

Here is a subset of the grammar rules for Python expressions for comparison,

multiplication, and addition expressions that achieves this:

Expression ::⇒ ComparisonExpr

ComparisonExpr ::⇒ AddExpression

ComparisonExpr ::⇒ ComparisonExpr Comparator ComparisonExpr

Comparator ::⇒ < | > | == | <= | >=

AddExpression ::⇒ MultExpression

AddExpression ::⇒ AddExpression + MultExpression

AddExpression ::⇒ AddExpression - MultExpression

MultExpression ::⇒ MultExpression * PrimaryExpression

MultExpression ::⇒ PrimaryExpression

PrimaryExpression ::⇒ Literal

PrimaryExpression ::⇒ Name

PrimaryExpression ::⇒ (Expression)

Note that the last rule allows parentheses to be used to group expressions. For

example, (3 + 4) * 5 would be parsed as the primary expression, (3 + 4),

times 5, so it evaluates to 35.

A Literal can be a numerical constant. Numbers in Python are similar (but not

identical) to numbers in Scheme. In the example program, we use the integer

literal 0.

A PrimaryExpression can also be a name, similar to names in Scheme. The evalu-

ation rule for a name in Python is similar to the stateful rule for evaluating a name

12.2. PARSER 12-9

in Scheme4.

Exercise 12.1. Do comparison expressions have higher or lower precedence than

addition expressions? Explain why using the grammar rules. ♦

Exercise 12.2. What do the following Python expressions evaluate to:

a. 1 + 2 + 3 * 4

b. 3 > 2 + 2

c. 3 * 6 >= 15 == 12

d. (3 * 6 >= 15) == True

♦

12.2.3 Lists

Python provides a list datatype similar to lists in Scheme, except instead of build-

ing list from simpler parts (that is, using cons pairs in Scheme), the Python list

type is provided as a built-in datatype. Lists are denoted in Python using square

brackets. For example, [] denotes an empty list, and [1, 2] denotes a list con-

taining two elements. In the tokenize procedure, we use tokens = [] to

initialize tokens to an empty list.

Elements can be selected from a list using the list subscription expression:

PrimaryExpression ::⇒ SubscriptExpression

SubscriptExpression ::⇒ PrimaryExpression [Expression]

If the first primary expression evaluates to a list, the subscript expression selects

the element indexed by value of the inner expression from the list. For example,

4There are some subtle differences and complexities (see Section 4.1 of the Python Reference

Manual, however, which we do not go into here.

12-10 CHAPTER 12. INTERPRETERS

>>> a = [1, 2, 3]

>>> a[0]

1

>>> a[1+1]

3

>>> a[3]

IndexError: list index out of range

>>> [1,2][1]

2

So, the expression p[0] in Python is analogous to (car p) in Scheme.

We can also use negative selection indexes to select elements from the back of the

list. The expression p[-1] selects the last element in the list p.

A subscript expression can also select a range of elements from the list:

SubscriptExpression ::⇒ PrimaryExpression [BoundLow : BoundHigh]

Bound ::⇒ Expression | ε

The subscript expression evaluates to a list containing the elements between the

low bound and the high bound. If the low bound is missing, the low bound is the

beginning of the list. If the high bound is missing, the high bound is the end of

the list. For example,

>>> a = [1, 2, 3]

>>> a[:1]

[1]

>>> a[1:]

[2, 3]

>>> a[4-2:3]

[3]

>>> a[:]

[1, 2, 3]

12.2. PARSER 12-11

So, the expression p[1:] in Python is analogous to (cdr p) in Scheme.

Python lists are mutable (the value of a list can change after it is created). We can

use list subscripts as the targets for an assignment expression:

Target ::⇒ SubscriptExpression

For example,

>>> a = [1, 2, 3]

>>> a[0] = 7

>>> a

[7, 2, 3]

>>> a[1:4] = [4, 5, 6]

>>> a

[7, 4, 5, 6]

>>> a[1:] = [6]

>>> a

[7, 6]

Note that assignments can not only be used to change the values of elements in

the list, but also to change the length of the list.

12.2.4 Strings

The other datatype used in tokenize is the string datatype, named str in

Python. Strings are immutable strings of characters. Unlike lists, which are muta-

ble, once a string is created its value cannot change. The value of a variable that is

a string can change by assigning a new string object to that variable, but this does

not change the value of the original string object.

Strings are enclosed in quotes, which can be either single quotes (e.g., ’hello’)

or double quotes (e.g., "hello"). In our example program, we use the assign-

ment expression, current = ’’, to initialize the value of current to the

empty string. The input, s, is a string object.

12-12 CHAPTER 12. INTERPRETERS

12.2.5 Objects and Methods

In Python, every data value, including lists and strings, is an object. This means

the way we manipulate data is to invoke methods on objects. The list datatype

provides methods for manipulating and observing lists. The grammar rules for

calling procedures are given below.

PrimaryExpression ::⇒ CallExpression

CallExpression ::⇒ PrimaryExpression (ArgumentList)

ArgumentList ::⇒ SomeArguments

ArgumentList ::⇒ ε

SomeArguments ::⇒ Expression

SomeArguments ::⇒ Expression , SomeArguments

To invoke a method we use the same rules, but the PrimaryExpression of the

CallExpression specifies an object and method:

PrimaryExpression ::⇒ AttributeReference

AttributeReference ::⇒ PrimaryExpression . Name

The name AttributeReference is used since the same syntax is used for accessing

the internal state of objects as well.

The tokenize procedure includes five method applications, four of which are

tokens.append(current). The object reference is tokens, the list we use

to keep track of the tokens in the input. The list datatype provides the append

method. It takes one parameter and adds that value to the end of the list. Hence,

these invocations add the value of current to the end of the tokens list.

The other method invocation is c.isspace() where c is a string consisting of

one character in the input. The isspace method for the string datatype returns

true if the input string is non-empty and all characters in the string are whitespace

(either spaces, tabs, or newlines).

The tokenize procedure also uses the built-in function len. The len func-

tion takes as input an object of a collection datatype (including a list or a string),

12.2. PARSER 12-13

and outputs the number of elements in the collection. In tokenize, we use

len(current) to find the number of elements in the current token. Note that

len is a procedure, not a method. The input object is passed in as a parameter.

12.2.6 Control Statements

Python provides control statements for making decisions and looping. Other

than the first two initializations, and the final two statements, the bulk of the

tokenize procedure is a for statement. The for statement provides a way

of iterating through a set of values, carrying out a body block for each value.

Statement ::⇒ ForStatement

ForStatement ::⇒ for Target in Expression : Block

The Target (as was used in the assignment statement) is typically a variable name.

The value of the Expression is a collection of elements. To evaluate a for state-

ment, each value of the Expression collection is assigned to the Target in order,

and the Block is evaluated once for each value. The for statement in tokenize

header is for c in s. The string s is the input string, a collection of charac-

ters. So, the loop will repeat once for each character in s, and the value of c will

be a string consisting of a single character, each character in the input string, in

turn.

Python’s if statement is similar to both the if and conditional expressions in Scheme:

Statement ::⇒ IfStatement

IfStatement ::⇒ if ExpressionPredicate : Block Elifs OptElse

Elifs ::⇒ ε

Elifs ::⇒ elif ExpressionPredicate : Block Elifs

OptElse ::⇒ ε

OptElse ::⇒ else : Block

The evaluation rule is similar to Scheme’s conditional expression. First, the ExpressionPredicate

of the if is evaluated. If it evaluates to a true value, the consequence Block is eval-

uated, and none of the rest of the IfStatement is evaluated. Otherwise, each of the

12-14 CHAPTER 12. INTERPRETERS

elif predicates is evaluated in order. If one evaluates to a true value, its Block is

evaluated and none of the rest of the IfStatement is evaluated. If none of the elif

predicates evaluates to a true value, the else Block is evaluated (if there is one).

The main IfStatement in tokenize is:

if c.isspace():

if len(current) > 0:

tokens.append(current)

current = ’’

elif c in ’()’:

if len(current) > 0:

tokens.append(current)

current = ’’

tokens.append(c)

else:

current = current + c

The if predicate tests if the current character is a space. If so, the end of the

current token has been reached. The consequence Block is itself an IfStatement.

If the current token has at least one character, it is appended to the list of tokens in

the input string and the current token is reset to the empty string. This IfStatement

has no elif or else clauses, so if the predicate is false, there is nothing to do. If the

predicate for the main IfStatement is false, evaluation proceeds to the elif clause.

The predicate for this clauses tests if c is in the set of characters given by the

literal string ’()’. That is, it is true if c is either an open or close parentheses.

As with spaces, a parenthesis ends the previous token, so the first statement in

the elif clauses is identical to the first consequent clause. The difference is unlike

spaces, we need to keep trace of the parentheses, so it is added to the token list

by tokens.append(c). The final clause is an else clause, so its body will

be evaluated if neither the if or elif predicate is true. This means the current

character is not a space or a parenthesis, so it is some other character. It should be

added to the current token. This is done by the assignment expression, current

= current + c. The addition operator in Python works on strings as well as

numbers (and some other datatypes). For strings, it concatenates the operands into

a new string. Recall that strings are immutable, so there is no equivalent to the

append method. Instead, appending a character to a string involves creating a

new string object.

12.2. PARSER 12-15

Finally, we consider the last two statements in our tokenize procedure:

if len(current) > 0:

tokens.append(current)

return tokens

These statements are not indented to the level inside the ForStatement. Hence,

they will be evaluated after all iterations of the for loop have finished. The first

statement is an if statement that adds the current token (if it is non-empty) to the

list of tokens. This would happen, for example, if the last character in the input

string is not a parenthesis or a space. The final statement is a ReturnStatement:

Statement ::⇒ ReturnStatement

ReturnStatement ::⇒ return Expression

A return statement finishes execution of a procedure body and returns the value of

the Expression to the caller as the result. In this instance the return statement is the

last statement in the procedure body, but return statements may appear anywhere

inside a procedure body.

12.2.7 Parsing

The next step is to take the list of tokens and produce a data structure that encodes

the structure of the input program. Since the Scheme language is built from simple

s-expressions, it will be adequate to use a list data structure as the result of the

parse. But, unlike the list returned by tokenize which is a flat list containing

the tokens in order, the list returned by parse is a structured list that may have

lists (and lists of lists, etc.) as elements. The input to parse is a string in the

target language. The output is a list of the s-expressions in the input. Here are

some examples:

>>> parse("150")

[’150’]

>>> parse("(+ 1 2)")

12-16 CHAPTER 12. INTERPRETERS

[[’+’, ’1’, ’2’]]

>>> parse("(+ 1 (* 2 3))")

[[’+’, ’1’, [’*’, ’2’, ’3’]]]

>>> parse("(define square (lambda (x) (* x x)))")

[[’define’, ’square’, [’lambda’, [’x’], [’*’, ’x’, ’x’]]]]

>>> parse("(+ 1 2) (+ 3 4)")

[[’+’, ’1’, ’2’], [’+’, ’3’, ’4’]]

Note that the parentheses are no longer included as tokens in the result, but their

presence in the input string determines the structure of the result.

Here is the definition of parse:

def parse(s):

def parsetokens(tokens, inner):

res = []

while len(tokens) > 0:

current = tokens.pop(0)

if current == ’(’:

res.append (parsetokens(tokens, True))

elif current == ’)’:

if inner:

return res

else:

error("Unmatched close paren: " + s)

return None

else:

res.append(current)

if inner:

error ("Unmatched open paren: " + s)

return None

else:

return res

return parsetokens(tokenize(s), False)

12.2. PARSER 12-17

It implements what is known as a recursive descent parser. The main parse pro-

cedure defines the parsetokens helper procedure and returns the result of call-

ing it with inputs that are the result of tokenizing the input string and the Boolean

literal False: return parsetokens(tokenize(s), False).

The parsetokens procedure takes two inputs: tokens, a list of tokens (that

results from the tokenize procedure); and inner, a Boolean that indicates

whether the parser is inside a parenthesized expression. The value of inner is

False for the initial call since the parser starts outside a parenthesized expres-

sion. All of the recursive calls result from encountering a ’(’, so the value passed

as inner is True for all the recursive calls.

The body of the parsetokens procedure initializes res to an empty list that

will be used to store the result. Then, the while statement iterates as long as the

token list contains at least one element. The first statement of the while state-

ment block assigns tokens.pop(0) to current. The pop method of the list

takes a parameter that selects an element from the list. The selected element is re-

turned as the result. The pop method also mutates the list object by removing the

selected element. So, tokens.pop(0) returns the first element of the tokens

list and removes that element from the list. This is similar to (cdr tokens)

with one big difference: the tokens object is modified by the call. This is essen-

tial to the parser making progress: every time the tokens.pop(0) expression

is evaluated the number of elements in the token list is reduced by one.

If the current token is an open parenthesis, parsetokens is called recur-

sively to parse the inner s-expression (that is, all the tokens until the matching

close parenthesis). The result is a list of tokens, which is appended to the result.

If the current token is a close parenthesis, the behavior depends on whether

or not the parser is parsing an inner s-expression. If it is inside an s-expression

(that is, an open parenthesis has been encountered with no matching close paren-

thesis yet), the close parenthesis closes the inner s-expression, and the result is

returned. If it is not in an inner expression, the close parenthesis has no match-

ing open parenthesis so a parse error is reported. The else clause deals with all

non-parentheses tokens by appending them to the result list.

12-18 CHAPTER 12. INTERPRETERS

12.3 Evaluator

The evaluator takes a list representing a parsed program fragment in Charme and

an environment, and outputs the result of evaluating the input code in the input en-

vironment. The evaluator implements the evaluation rules for the target language.

The core of the evaluator is the procedure meval:

def meval(expr, env):

if isPrimitive(expr):

return evalPrimitive(expr)

elif isConditional(expr):

return evalConditional(expr, env)

elif isDefinition(expr):

evalDefinition(expr, env)

elif isName(expr):

return evalName(expr, env)

elif isLambda(expr):

return evalLambda(expr, env)

elif isApplication(expr):

return evalApplication(expr, env)

else:

error ("Unknown expression type: " + str(expr))

The if statement matches the input expression with one of the expression types

(or the definition) in the Charme language, and returns the result of applying the

corresponding evaluation procedure (if the input is a definition, no value is re-

turned since definitions do not produce an output value). We next consider each

evaluation rule in turn.

12.3.1 Primitives

Charme supports three kinds of primitives: natural numbers, Boolean constants,

and primitive procedures.

12.3. EVALUATOR 12-19

If the expression is a number, it is a string of digits. The isNumber procedure

evaluates to True if and only if its input is a number:

def isNumber(expr):

return isinstance(expr, str) and expr.isdigit()

Here, we use the built-in function isinstance to check if expr is of type str.

The and expression in Python evaluates similarly to the Scheme and special

form: the left operand is evaluated first; if it evaluates to a false value, the value

of the and expression is that false value. If it evaluates to a true value, the right

operand is evaluated, and the value of the and expression is the value of its right

operand. This evaluation rule means it is safe to use expr.isdigit() in the

right operand, since it is only evaluated if the left operand evaluated to a true

value, which means expr is a string.

To evaluate a number primitive, we need to covert the string representation to a

number of type int. The int(s) constructor takes a string as its input and

outputs the corresponding integer:

def evalPrimitive(expr):

if isNumber(expr):

return int(expr)

else:

return expr

The else clause means that all other primitives (in Charme, this is only prim-

itive procedures and Boolean constants) self-evaluate: the value of evaluating a

primitive is itself.

Primitive procedures are defined using Python procedures. Hence, the isPrimitiveProcedure

procedure is defined using callable, a procedure that returns true only for ob-

jects that are callable (such as procedures and methods):

12-20 CHAPTER 12. INTERPRETERS

def isPrimitiveProcedure(expr):

return callable(expr)

Here is the primitivePlus procedure that is associated with the + primitive

procedure:

def primitivePlus (operands):

if (len(operands) == 0):

return 0

else:

return operands[0] + primitivePlus (operands[1:])

The input is a list of operands. Since a procedure is applied only after all subex-

pressions are evaluated (according to the Scheme evaluation rule for an application

expression), there is no need to evaluate the operands: they are already the evalu-

ated values. For numbers, the values are Python integers, so we can use the Python

+ operator to add them. To provide the same behavior as the Scheme primitive

+ procedure, we define our Charme primitive + procedure to evaluate to 0 when

there are no operands, and otherwise, recursively add all of the operand values.

The other primitive procedures are defined similarly.

def primitiveTimes (operands):

if (len(operands) == 0):

return 1

else:

return operands[0] * primitiveTimes (operands[1:])

def primitiveMinus (operands):

if (len(operands) == 1):

return -1 * operands[0]

elif len(operands) == 2:

return operands[0] - operands[1]

else:

evalError("- expects 1 or 2 operands, given %s: %s"

% (len(operands), str(operands)))

12.3. EVALUATOR 12-21

def primitiveEquals (operands):

checkOperands (operands, 2, "=")

return operands[0] == operands[1]

def primitiveZero (operands):

checkOperands (operands, 1, "zero?")

return operands[0] == 0

def primitiveGreater (operands):

checkOperands (operands, 2, ">")

return operands[0] > operands[1]

def primitiveLessThan (operands):

checkOperands (operands, 2, "<")

return operands[0] < operands[1]

The checkOperands procedure reports an error if a primitive procedure is ap-

plied to the wrong number of operands:

def checkOperands(operands, num, prim):

if (len(operands) != num):

evalError("Primitive %s expected %s operands, given %s: %s"

% (prim, num, len(operands), str(operands)))

12.3.2 Conditionals

Charme provides a conditional expression with an evaluation rule identical to the

Scheme conditional expression. We recognize a conditional expression by the

cond token at the beginning of the expression:

def isSpecialForm(expr, keyword):

12-22 CHAPTER 12. INTERPRETERS

return isinstance(expr, list) \

and len(expr) > 0 and expr[0] == keyword

def isConditional(expr):

return isSpecialForm(expr, ’cond’)

We use the

continuation character in the return statement of isSpecialForm to split one

expression into multiple lines. Recall that newlines matter in Python, so it would

be an error to split a statement onto multiple likes without using the continuation

character.

To evaluate a conditional, we need to follow the evaluation rule:

def evalConditional(expr, env):

assert isConditional(expr)

if len(expr) <= 2:

evalError ("Bad conditional expression: %s" % str(expr))

for clause in expr[1:]:

if len(clause) != 2:

evalError ("Bad conditional clause: %s" % str(clause))

predicate = clause[0]

result = meval(predicate, env)

if result:

return meval(clause[1], env)

evalError ("No conditional predicate is true: %s"

% (expr))

return None

12.3.3 Definitions and Names

To evaluate definitions and names we need to represent environments. A definition

adds a name to a frame, and a name expression evaluates to the value associated

with a name.

We will use a Python class to represent an environment. As in Chapter 10, a

class packages state and procedures that manipulate that state. In Scheme, we

12.3. EVALUATOR 12-23

needed to use a message-accepting procedure to do this. Python provides the

class construct to support it directly. We define the Environment class for rep-

resenting an environment. It has internal state for representing the parent (itself

an Environment or None, Python’s equivalent to null for the global environ-

ment’s parent), and for the frame. The Python dictionary datatype provides a con-

venient way to implement a frame. It is a lookup-table where values are associated

with keys. Curly brackets are used to denote a dictionary. The init proce-

dure constructs a new object. It initializes the frame of the new environment to the

empty dictionary using self. frame = { }. The addVariablemethod ei-

ther defines a new variable or updates the value associated with a variable. Using

the dictionary datatype, we can do this with a simple assignment statement. The

lookupVariable method first checks if the frame associated with this envi-

ronment has a key associated with the input name. If it does, the value associated

with that key is the value of the variable and that value is returned. Otherwise, if

the environment has a parent, the value associated with the name is the value of

looking up the variable in the parent environment. This directly follows from the

stateful Scheme evaluation rule for name expressions. The else clause addresses

the situation where the name is not found and there is no parent environment (since

we have already reached the global environment) by reporting an evaluation error

indicating an undefined name.

class Environment:

def __init__(self, parent):

self._parent = parent

self._frame = { }

def addVariable(self, name, value):

self._frame[name] = value

def lookupVariable(self, name):

if self._frame.has_key(name):

return self._frame[name]

elif (self._parent):

return self._parent.lookupVariable(name)

else:

evalError("Undefined name: %s" % (name))

12-24 CHAPTER 12. INTERPRETERS

Once the Environment class is defined, implementing the evaluation rules for

definitions and name expressions is straightforward.

def isDefinition(expr):

return isSpecialForm(expr, ’define’)

def evalDefinition(expr, env):

assert isDefinition(expr)

if len(expr) != 3:

evalError ("Bad definition: %s" % str(expr))

name = expr[1]

if isinstance(name, str):

value = meval(expr[2], env)

env.addVariable(name, value)

else:

evalError ("Bad definition: %s" % str(expr))

def isName(expr):

return isinstance(expr, str)

def evalName(expr, env):

assert isName(expr)

return env.lookupVariable(expr)

12.3.4 Procedures

The result of evaluating a lambda expression is a procedure. Hence, to define the

evaluation rule for lambda expressions we need to define a class for representing

user-defined procedures. It needs to record the parameters, procedure body, and

defining environment:

class Procedure:

12.3. EVALUATOR 12-25

def __init__(self, params, body, env):

self._params = params

self._body = body

self._env = env

def getParams(self):

return self._params

def getBody(self):

return self._body

def getEnvironment(self):

return self._env

def toString(self):

return "<Procedure %s / %s>" \

% (str(self._params), str(self._body))

Using this, we can define the evaluation rule for lambda expressions to create a

Procedure object:

def isLambda(expr):

return isSpecialForm(expr, ’lambda’)

def evalLambda(expr,env):

assert isLambda(expr)

if len(expr) != 3:

evalError ("Bad lambda expression: %s" % str(expr))

return Procedure(expr[1], expr[2], env)

12.3.5 Application

The evaluators circularity comes from the way evaluation and application are de-

fined recursively. To perform an application, we need to evaluate all the subex-

pressions of the application expression, and then apply the result of evaluating the

first subexpression to the values of the other subexpressions.

12-26 CHAPTER 12. INTERPRETERS

def isApplication(expr):

requires all special forms checked first

return isinstance(expr, list)

def evalApplication(expr, env):

subexprs = expr

subexprvals = map (lambda sexpr: meval(sexpr, env), \

subexprs)

return mapply(subexprvals[0], subexprvals[1:])

The evalApplication procedure uses the built-in map procedure, which is

similar to Scheme’s map procedure. The first parameter to map is a procedure

constructed using a lambda expression (identical in meaning, but not in syntax, to

Scheme’s lambda expression); the second parameter is the list of subexpressions.

The mapply procedure implements the application rules. If the procedure is a

primitive, it “just does it”: it applies the primitive procedure to its operands. To

apply a constructed procedure (represented by an object of the Procedure class)

it follows the stateful application rule for applying constructed procedures: it cre-

ates a new environment, puts variables in that environment for each parameter and

binds them to the corresponding operand values, and evaluates the procedure body

in the new environment.

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)):

return proc(operands)

elif isinstance(proc, Procedure):

params = proc.getParams()

newenv = Environment(proc.getEnvironment())

if len(params) != len(operands):

evalError ("Parameter length mismatch: " \

"%s given operands %s" %

(proc.toString(), str(operands)))

for i in range(0, len(params)):

newenv.addVariable(params[i], operands[i])

return meval(proc.getBody(), newenv)

12.3. EVALUATOR 12-27

else:

evalError("Application of non-procedure: %s" % (proc))

12.3.6 Finishing the Interpreter

To finish the interpreter, we define the evalLoop procedure that sets up the

global environment and provides a simple user interface to the interpreter. To ini-

tializes the global environment, we need to create an environment with no parent

and place variables in it corresponding to the primitives in Charme:

def initializeGlobalEnvironment():

global globalEnvironment

globalEnvironment = Environment(None)

globalEnvironment.addVariable(’#t’, True)

globalEnvironment.addVariable(’#f’, False)

globalEnvironment.addVariable(’+’, primitivePlus)

globalEnvironment.addVariable(’-’, primitiveMinus)

globalEnvironment.addVariable(’*’, primitiveTimes)

globalEnvironment.addVariable(’=’, primitiveEquals)

globalEnvironment.addVariable(’zero?’, primitiveZero)

globalEnvironment.addVariable(’>’, primitiveGreater)

globalEnvironment.addVariable(’<’, primitiveLessThan)

The evaluation loop reads a string from the user using the Python built-in pro-

cedure raw input. It uses parse to covert that string into a structured list

representation. Then, evaluates each expression in the input string using meval.

def evalLoop():

initializeGlobalEnvironment()

while True:

12-28 CHAPTER 12. INTERPRETERS

expr = raw_input("Charme> ")

if expr == ’quit’:

break

exprs = sexpr.parse(expr)

for expr in exprs:

print meval(expr, globalEnvironment)

12.4 Summary

Languages are tools for thinking, as well as means to express executable pro-

grams. A programming language is defined by its grammar and evaluation rules.

To implement a language, we need to implement a parser that carries out the gram-

mar rules and an evaluator that implements the evaluation rules. Once we have an

interpreter, we can change the meaning of our language by changing the evalua-

tion rules. In the next chapter, we will see some examples that illustrate the value

of being able to extend and change a language.

