
Chapter 13

Lazy Evaluation

Ordinary men and women, having the opportunity of a happy life, will become more kindly

and less persecuting and less inclined to view others with suspicion. The taste for war will

die out, partly for this reason, and partly because it will involve long and severe work for

all. Good nature is, of all moral qualities, the one that the world needs most, and good

nature is the result of ease and security, not of a life of arduous struggle. Modern methods of

production have given us the possibility of ease and security for all; we have chosen, instead,

to have overwork for some and starvation for others. Hitherto we have continued to be as

energetic as we were before there were machines; in this we have been foolish, but there is

no reason to go on being foolish forever.

Bertrand Russell (co-author of Principia Mathematica), In Praise of Idleness, 1932

By changing the language interpreter, we can extend the programming language

and change the evaluation rules. This can enable constructs that could not be

expressed in the previous language, and change the way we think about solving

problems. In this chapter, we explore a variation to our Charme interpreter in

which the evaluation rule for application is altered so the expressions passed as

parameters are not evaluated until their values are needed. This is known as lazy

evaluation, and it enables procedures to be defined that could not be defined using

the normal (eager) evaluation rule.

13-1



13-2 CHAPTER 13. LAZY EVALUATION

13.1 In Praise of Laziness

The original Charme interpreter, and the standard Scheme language, evaluates

procedure arguments eagerly: all argument subexpressions are evaluated whether

or not their values are needed. This is why, for example, we need a special form

for if-expressions rather than being able to define a procedure if with the same

behavior. With the normal Scheme (and Charme) evaluation rules, the following

procedure would not have the same behavior as the if-expression special form:

(define if

(lambda (p c a)

(cond (p c)

(#t a))))

For uses where the consequent and alternate expressions can be evaluated without

producing an error, having a side-effect, or failing to terminate, the if procedure

behaves indistinguishably from the special form. For example,

> (if (> 3 4) 12 13)

13

If it is possible to tell if one of the expressions is evaluated, however, the if

procedure behaves very differently from the if-expression special form:

> (if (> 3 4) (car null) 13)

] car: expects argument of type <pair>; given ()

With the special form if-expression, the consequent expression is only evaluated

if the predicate expression is true. Hence, the expression above would evaluate to

13 with the special form if expression provided by Scheme.

By changing the Charme evaluator to delay evaluation of operand expressions

until their value is needed, we can enable programs to define procedures that con-

ditionally evaluate their arguments. This is known as lazy evaluation, since an

expression is not evaluated until its value is needed. Confusingly, it is also known

as normal order evaluation, even though in the Scheme language it is not the nor-

mal evaluation order. Scheme is an applicative-order language, which means that



13.2. DELAYING EVALUATION 13-3

all arguments are evaluated as part of the application rule, whether or not their

values are needed by the called procedure. Other languages including Haskell and

Miranda provide lazy evaluation as the standard application rule.

Lazy evaluation has several advantages over eager evaluation. As the if example

indicates, it is possible to express procedures in a language with lazy evaluation

that cannot be expressed in a language that has eager evaluation. Many of the spe-

cial forms in Scheme including if, cond, and begin could be defined as regular

procedures in a language with lazy evaluation. It may also allow some evaluations

to be performed more efficiently. As an extreme example, consider the expres-

sion, ((lambda (x) 3) (loop-forever)), where loop-forever is

defined as:

(define loop-forever (lambda () (loop-forever)))

With lazy evaluation the application expression evaluates to 3; with eager evalua-

tion, the evaluation never terminates since the procedure is not applied until after

its operand expressions finish evaluating, but the (loop-forever) expression

never finishes evaluating. We will encourage you

to develop the three

great virtues of a

programmer: Laziness,

Impatience, and Hubris.
Larry Wall, Programming Perl13.2 Delaying Evaluation

To implement lazy evaluation in our interpreter we need to modify the applica-

tion expression evaluation rule to delay evaluating the operand expressions until

they are needed. To do this, we introduce a new datatype known as a thunk. We

define a Python class, Thunk for representing thunks. A thunk keeps track of an

expression whose evaluation is delayed until it is needed. We want to ensure that

once the evaluation is performed, the resulting value is saved so the expression

does not need to be evaluated again. Thus, a Thunk is in one of two possible

states: unevaluated (the operand expression has not yet been needed, so it has not

been evaluated and its value is unknown), and evaluated (the operand expression’s

value has been needed at least once, and its known value is recorded). In addi-

tion to changing the application evaluation rule to record the operand expressions

as Thunk objects, we need to alter the rest of the evaluation rules to deal with

Thunk objects.



13-4 CHAPTER 13. LAZY EVALUATION

The Thunk class implements thunks. To delay evaluation of an expression, it

keeps track of the expression. Since the value of the expression may be needed

when the evaluator is evaluating an expression in some other environment, we

also need to keep track of the environment in which the thunk expression should

be evaluated.

class Thunk:

def __init__(self, expr, env):

self._expr = expr

self._env = env

self._evaluated = False

def value(self):

if not self._evaluated:

self._value = forceeval(self._expr, self._env)

self._evaluated = True

return self._value

def isThunk(expr):

return isinstance(expr, Thunk)

The implementation uses the evaluated instance variable, to keep track of

whether or not the thunk expression has been evaluated. Initially this value is

False. The value instance variable keeps track of the value of the thunk once

it has been evaluated.

To implement lazy evaluation, we change the evaluator so there are two different

evaluation procedures: meval is the standard evaluation procedure (which does

not evaluate thunks), and forceeval is the evaluation procedure that forces

thunks to be evaluated to values. This means the interpreter should use meval

when the actual expression value may not be needed, and forceeval only when

the value of the expression is needed. We need to force evaluation when the result

is displayed to the user in the evalLoop procedure, hence, the call to meval in

the evalLoop procedure is replaced with:

res = forceeval(expr, globalEnvironment)

The meval procedure is modified to add an elif clause for thunk objects that



13.2. DELAYING EVALUATION 13-5

returns the same expression:

def meval(expr, env):

... # same as before

elif isThunk(expr): # Added to support

return expr # lazy evaluation

else:

evalError ("Unknown expression type: " + str(expr))

The forceeval procedure first uses meval to evaluate the expression normally.

If the result is a thunk, it uses the value method to force evaluation of the thunk

expression. Recall that the Thunk.value method itself uses forceeval to

find the result of the thunk expression, so there is no need to recursively evaluated

the value resulting from the value invocation.

def forceeval(expr, env):

value = meval(expr, env)

if isinstance(value, Thunk):

return value.value()

else:

return value

To change the rule for evaluating application expressions to support delayed eval-

uation of operands, we need to redefine the evalApplication procedure.

Instead of evaluating all the operand subexpressions, the new procedure creates

Thunk objects representing each operand. Only the first subexpression, that is,

the procedure to be applied, must be evaluated. Note that evalApplication

uses forceeval to obtain the value of the first subexpression, since its actual

value is needed in order to apply it.

def evalApplication(expr, env):

ops = map (lambda sexpr: Thunk(sexpr, env), expr[1:])

return mapply(forceeval(expr[0], env), ops)



13-6 CHAPTER 13. LAZY EVALUATION

There are two other places where actual values are needed: when applying a prim-

itive procedure and when making a decision that depends on a program value.

The first situation requires actual values since the primitive procedures are not

defined to operate on thunks. To apply a primitive, we need the actual values of

its operands, so must force evaluation of any thunks in the operands. Hence, the

definition for mapply forces evaluation of the operands to a primitive procedure

using the deThunk procedure.

def deThunk(expr):

if isThunk(expr):

return expr.value()

else:

return expr

def mapply(proc, operands):

if (isPrimitiveProcedure(proc)):

ops = map (lambda op: deThunk(op), ops)

return proc(ops)

elif ... # same as before

The second situation arises in the evaluation rule for conditional expressions. In

order to know how to evaluate the conditional, it is necessary to know the actual

value of the predicate expressions. Without knowing if the predicate evaluates to a

true or false value, the evaluator cannot proceed correctly. It must either evaluate

the consequent expression associated with the predicate, or continue to evaluate

the following predicate expression. So, we change the evalConditional pro-

cedure to use:

result = forceeval(predicate, env)

This forces the predicate to evaluate to a value (even if it is a thunk), so its ac-

tual value can be used to determine how the rest of the conditional expression

evaluates.



13.3. LAZY PROGRAMMING 13-7

13.3 Lazy Programming

Lazy evaluation enables programming constructs that are not possible with eager

evaluation. For example, the if procedure defined at the beginning of this chapter

behaves like the if-expression special form in Scheme only if our interpreter has

lazy evaluation. Lazy evaluation also enables programs to deal with seemingly

infinite data structures. This is possible since only those values of the apparently

infinite data structure that are used need to be created. Much of my work has

come from being lazy.
John BackusSuppose we define LazyCharme procedures similar to the Scheme procedures for

manipulating pairs:

(define cons

(lambda (a b)

(lambda (p) (if p a b))))

(define car (lambda (p) (p #t)))

(define cdr (lambda (p) (p #f)))

These behave similarly to the corresponding Scheme procedures, except their

operands are evaluated lazily. This means, we can define an infinite list:

(define ints-from

(lambda (n)

(cons n (ints-from (+ n 1)))))

In Scheme (with eager evaluation), (ints-from 1) would never finish eval-

uating. It constructs a list of all integers starting at 1, but has no base case for

stopping the recursive applications. In LazyCharme, however, the operands to the

cons application in the body of ints-from are not evaluated until they are

needed. Hence, (ints-from 1) terminates. It produces a seemingly infinite

list, but only the evaluations that are needed are performed:

LazyCharme> (car (ints-from 1))

1



13-8 CHAPTER 13. LAZY EVALUATION

LazyCharme> (car (cdr (cdr (cdr (ints-from 1)))))

4

Some evaluations will still fail to terminate. For example, using the standard

definition of length:

(define null #f)

(define null?

(lambda (x) (= x #f)))

(define length

(lambda (lst)

(if (null? lst) 0

(+ 1 (length (cdr lst))))))

Evaluating (length (ints-from 1)) would never terminate. Every time

we evaluate an application of length, it applies cdr to the input list, which

causes ints-from to evaluate another cons. The actual length of the list is

infinite, so the application of length does not terminate.

We can use lists with delayed evaluation to solve problems. Reconsider the Fi-

bonacci sequence from Chapter 6. Using lazy evaluation, we can define a list that

is the infinitely long Fibonacci sequence:1

(define fibo-gen

(lambda (a b)

(cons a (fibo-gen b (+ a b)))))

(define fibos (fibo-gen 0 1))

1This example is based on Structure and Interpretation of Computer Programs, Section 3.5.2,

which also presents several other examples of interesting programs constructed using delayed

evaluation.



13.3. LAZY PROGRAMMING 13-9

Then, to obtain the nth Fibonacci number, we just need to get the nth element of

fibos:

(define fibo

(lambda (n) (get-nth fibos n)))

where get-nth is defined as:

(define get-nth

(lambda (lst n)

(if (= n 0)

(car lst)

(get-nth (cdr lst) (- n 1)))))

Another strategy for defining the Fibonacci sequence is to first define a procedure

that merges two (possibly infinite) lists, and then define the Fibonacci sequence

in terms of itself. The merge-lists procedure combines elements in two lists

using an input procedure.

(define merge-lists

(lambda (lst1 lst2 proc)

(if (null? lst1) null

(if (null? lst2) null

(cons (proc (car lst1) (car lst2))

(merge-lists (cdr lst1) (cdr lst2) proc))))))

We can think of the Fibonacci sequence as the combination of two sequences,

starting with the 0 and 1 base cases, combined using addition where the second

sequences is offset by one position. This allows us to define the Fibonacci se-

quence without needing a separate generator procedure:



13-10 CHAPTER 13. LAZY EVALUATION

(define fibos

(cons 0 (cons 1 (merge-lists fibos (cdr fibos) +))))

The sequence is defined to start with 0 and 1 as the first two elements. The fol-

lowing elements are the result of merging fibos and (cdr fibos) using the

+ procedure. So, the third element in the sequence is (+ (car fibos) (car

(cdr fibos))) which evaluates to 1, and the fourth element is (+ (car

(cdr fibos)) (car (cdr (cdr fibos))))which evaluates to 2. This

definition relies heavily on lazy evaluation; otherwise, the evaluation of

(merge-lists fibos (cdr fibos) +)

would never terminate: the input lists are effectively infinite.

Exercise 13.1. Define the sequence of factorials using techniques similar to how

we defined fibos. ♦

Exercise 13.2. For each of these questions, try to figure out what infinite list is

defined by the given expression without evaluating it in LazyCharme.

a. (define p (cons 1 (merge-lists p p +)))

b. (define t (cons 1 (merge-lists t (merge-lists t t +) +)))

c. (define twos (cons 2 twos))

d. (merge-lists (ints-from 1) twos *)

♦

Exercise 13.3. Assuming the definitions from the previous exercise, what is the

value of dl?

(define filter

(lambda (lst proc)

(if (null? lst) null

(if (proc (car lst))



13.3. LAZY PROGRAMMING 13-11

(cons (car lst) (filter (cdr lst) proc))

(filter (cdr lst) proc)))))

(define contains-ordered

(lambda (lst val)

(if (null? lst) #f

(if (> (car lst) val) #f

(if (= (car lst) val) #t

(contains-ordered (cdr lst) val))))))

(define dl

(filter (ints-from 1)

(lambda (el)

(if (contains-ordered

(merge-lists (ints-from 1) twos *)

el)

#f

#t))))

♦

Exercise 13.4.(??) A simple algorithm known as the “Sieve of Eratosthenes” for

finding prime numbers was created by Eratosthenes, an ancient Greek mathemati-

cian and astronomer (he was also known for calculating the circumference of the

Earth). The algorithm imagines starting with an (infinite) list of all the integers

starting from 2. Then, it imagines repeating the following two steps forever:

1. Circle the first number in the list that is not crossed off. That number is

prime.

2. Cross off all numbers in the list that are multiples of the circled number.

To carry out the algorithm in practice, of course, the initial list of numbers must

be finite, otherwise it would take forever to cross off all the multiples of 2.

Implement the sieve algorithm using lists with lazy evaluation. You may find the

filter and merge-lists procedures useful, but will probably find it neces-

sary to define some additional procedures. ♦



13-12 CHAPTER 13. LAZY EVALUATION

13.4 Summary

We can produce a new language by changing the evaluation rules of an interpreter.

Changing the evaluation rules changes what programs mean, and may enable pro-

grammers to approach problems in new ways. In this example, we have seen

that changing the evaluation rule for applications to evaluate operand expressions

lazily enables new programming constructs.


