
Chapter 3

Programming

The Analytical Engine has no pretensions whatever to originate any thing. It can do whatever

we know how to order it to perform. It can follow analysis; but it has no power of anticipating

any analytical relations or truths. Its province is to assist us in making available what we are

already acquainted with.

Augusta Ada, Countess of Lovelace, in Notes on the Analytical Engine, 1843

What distinguishes a computer from other tools is its programmability. Without

a program, a computer is an overpriced and not very effective door stopper. With

the right program, though, a computer can be a tool for communicating across the

continent, discovering a new molecule that can cure cancer, writing and recording

a symphony, or managing the logistics of a retail empire.

Programming is the act of writing instructions that make the computer do some-

thing useful. It is an intensely creative activity, involving aspects of art, engi-

neering, and science. The best programs are written to be executed efficiently by

computers, but also to be read and understood by humans. The ideal programmer

would have the vision of Issac Netwon, the intellect of Albert Einstein, the mem-

ory of Joshua Foer, the courage of Amelia Earhart, the determination of Michael

Jordan, the political savvy of Abraham Lincoln, the creativity of Miles Davis, the

aesthetic sense of Maya Lin, the wisdom of Benjamin Franklin, the foresight of

Garry Kasparov, the hindsight of Edward Gibbon, the writing talents of William

Shakespeare, the oratorical skills of Martin Luther King, the pragmatism of Abra-

ham Lincoln, the humility of Socrates, and the self-confidence of Grace Hopper.

3-1

3-2 CHAPTER 3. PROGRAMMING

Fortunately, it is not necessary to possess all of those rare qualities to be a good

programmer! Indeed, anyone who is able to master the intellectual challenge

of learning a language1 can become a good programmer. Since programming is

a new way of thinking, many people find it challenging and even frustrating at

first. Because the computer does exactly what it is told, any small mistake in a

program may prevent it from working as intended. With a bit of patience and

persistence, however, the tedious parts become easier, and you will be able to

focus your energies on the fun and creative problem solving parts.

3.1 Problems with Natural Languages

Natural languages, such as English, work reasonably well for human-human com-

munication, but are not well-suited for human-computer or computer-computer

communication. There are many reasons for this including:

Complexity. Although English may seem simple to you now (at least compared to

learning a new language!), it took many years of intense learning for you to learn

it. Despite all those years of effort, you only know a small fraction of the entire

language. The Oxford English Dictionary contains 615,000 words, of which a

typical native English speaker knows about 40,000.

Ambiguity. Not only do natural languages have huge numbers of words, most

words have many different meanings. To understand which meaning is intended

requires knowing the context, and sometimes pure guesswork. For example, what

does it mean to be paid biweekly? According to the American Heritage Dictionary

(Fourth Edition), biweekly has two definitions:

1. Happening every two weeks.

2. Happening twice a week; semiweekly.

So, depending on which definition is intended, someone who is paid biweekly

could either be paid once or four times every two weeks!

Even if we can agree on the definition of every word, the meaning of English

sentences is often ambiguous. Here is one of my favorite examples, taken from

the instructions with a shipment of ballistic missiles from the British Admiralty:2

1Which, presumably, anyone who has gotten this far has done, at least in English!
2Reported in The Hummus Report (http://www.textfiles.com/magazines/HUMUS/humus.005).

3.1. PROBLEMS WITH NATURAL LANGUAGES 3-3

It is necessary for technical reasons that these warheads be stored up-

side down, that is, with the top at the bottom and the bottom at the top.

In order that there be no doubt as to which is the bottom and which is

the top, for storage purposes, it will be seen that the bottom of each

warhead has been labeled ’TOP’.

Irregularity. Because natural languages evolve over time as different cultures

interact and speakers misspeak and listeners mishear, natural languages end up a

morass of irregularity. Nearly all grammar rules have exceptions. For example,

English has a rule that we can make a word plural by adding an s. The new

word means “more than one of the original word’s meaning” (actually, even the

standard rule is complicated, since it may also be used to mean zero of them).

This rule works for most words: word ::⇒words, language ::⇒languages, person

::⇒persons3. It does not work for others, however. The plural of goose is geese

(and gooses is not an English word), the plural of deer is deer (and deers is not an

English word), and the plural of beer is controversial (and may depend on whether

you speak American English or Canadian English4). These irregularities may be

charming for a natural language, but they are a constant source of difficulty. I didn’t have time to

write a short letter, so I

wrote a long one

instead.
Mark Twain

Uneconomic. It requires a lot of space to express a complex idea in a natural

language. Many superfluous words are needed for grammatical correctness, even

though they do not contribute to the desired meaning. Since natural languages

evolved for everyday communication, they are not well suited to describing the

precise steps and decisions needed in a computer program.

As an example, consider a process for finding the maximum of two numbers. In

English, we could describe it like this,

To find the maximum of two numbers, compare them. If the first num-

ber is greater than the second number, the maximum is the first number.

Otherwise, the maximum is the second number.

Perhaps shorter descriptions are possible, but any much shorter description proba-

bly assumes the reader knows a lot already. By contrast, we can express the same

steps in Scheme in very concise way5:

(define (max a b) (if (> a b) a b))

3Or is it people? What is the singular of people?
4See http://crofsblogs.typepad.com/english/2005/06/beer or beers.html.
5Don’t worry if this doesn’t make sense yet. It should by the end of this chapter.

3-4 CHAPTER 3. PROGRAMMING

Limited means of abstraction. Natural languages provide small, fixed sets of

pronouns to use as means of abstraction, and the rules for binding pronouns

to meanings are often unclear. Since programming often involves using simple

names to refer to complex things, we need more powerful means of abstraction

than natural languages provide.

3.2 Programming Languages

Hence, natural languages are not well suited to programming computers. In-

stead, we need languages that are simpler, less ambiguous, more regular, more

economic, and that provide more powerful means of abstraction than natural lan-

guages. A programming language is a language that is designed to be read and

written by humans to create programs that can be executed by computers6.

Programming languages come in many flavors. One reason for this is that they

are at different levels of abstraction. Ultimately, we want a program the computer

can execute. This means at the lowest level we need languages the computer can

understand directly. At this level, the program is just a sequence of zeros and

ones (e.g., 1110101111111110. . .). Code at this level is not easy for humans

to understand or write, but it is easy for a processor to execute quickly. The

machine code encodes instructions that direct the processor to take simple actions

like moving data from one place to another, performing simple arithmetic, and

jumping around to find the next instruction to execute. For example, the sequence

of zeros and ones encodes an instruction for the Intel x86 processor (used on

most PCs) that tells the processor to jump backwards two locations. In fact, two

locations is the amount of space needed to hold this instruction, so jumping back

two locations actually jumps back to the beginning of this instruction (hence, it

gets stuck running forever without making any progress).

The computer’s processor is designed to execute very simple instructions like this

one. This means each instruction can be executed very quickly. A typical modern

processor can execute billions of instructions in a single second.7Nobody believed that I

had a running compiler

and nobody would

touch it. They told me

computers could only

do arithmetic.
Grace Hopper

6We will provide a more precise definition of programming language in Chapter ??, after we

have a formal model of a computer.
7When a computer is marketed as a “2GHz processor” that means the processor executes 2

billion cycles per second. This does not map directly to the number of instructions it can execute

in a second, though, since some instructions take several cycles to execute.

3.3. SCHEME 3-5

Until the early 1950s, all programming was done at the level of simple instruc-

tions. The problem with instructions at this level is that they are not easy for

humans to write and understand, and you need many simple instructions before

you have a useful program.

In the early 1950s, Admiral Grace Hopper developed the first compilers. A com-

piler is a computer program that generates other programs. It can translate an

input program written in a high-level language that is easier for humans to cre-

ate into a program in a machine-level language that is easier for a computer to

execute.

An alternative to a compiler is an interpreter. An interpreter is a tool that translates

between a higher-level language and a lower-level language, but where a compiler

translates an entire program at once and produces a machine language program

that can be executed directly, an interpreter interprets the program a small piece

at a time while it is running. This has the advantage that we do not have to run

a separate tool to compile a program before running it; we can simply enter our

program into the interpreter and run it right away. This makes it easy to make

small changes to a program and try it again, and to observe the state of our program

as it is running.

A disadvantage of using an interpreter instead of a compiler is that because the

translation is happening while the program is running, the program may execute

much slower than a similar compiled program would. Another advantage of com-

pilers over interpreters is that since the compiler translates the entire program it

can also analyze the program for consistency and detect certain types of program-

ming mistakes automatically instead of encountering them when the program is

running (or worse, not detecting them at all and producing unintended results).

This is especially important when writing large, critical programs such as flight

control software — we want to detect as many problems as possible in the flight

control software before the plane is flying!

3.3 Scheme

For now, we are more concerned with interactive exploration than with perfor-

mance and detecting errors early, so we use an interpreter instead of a compiler.

The programming system we use is depicted in Figure 3.3. The input to our pro-

3-6 CHAPTER 3. PROGRAMMING

gramming system is a program written in the Scheme programming language.

Scheme8 was developed at MIT in the 1970s by Guy Steele and Gerald Sussman,

based on the LISP programming language that was developed by John McCarthy

in the 1950s. A Scheme interpreter interprets a Scheme program and executes it

on the machine processor.

Scheme Program Scheme Code

?'
&

$
%Scheme Interpreter Low-Level Language

?'
&

$
%Processor Machine Language

Figure 3.1: Levels of Abstraction.

Although Scheme is not widely used in industry, it is a great language for learn-

ing about computing and programming. The primary advantage of using Scheme

to learn about computing is its simplicity and elegance. The language is simple

enough that you will learn nearly the entire language by the end of this chapter

(we defer describing a few aspects until Chapter ??), and by the end of this book

you will know enough to implement your own Scheme interpreter. By contrast,

programming languages such as C++ and Java require thousands of pages to de-

scribe, and even the world’s experts in those languages do not agree on exactly

what all programs mean.

8Originally, it was named “Schemer”, but the machine used to develop it only supported 6-

letter file names, so the name was shortened to “Scheme”

3.4. EXPRESSIONS 3-7

3.4 Expressions

Scheme programs are composed of expressions and definitions (Section 3.5). An

expression is a syntactic element that has a value. The act of determining the value

associated with an expression is called evaluation. A Scheme interpreter, such as

the one provided in DrScheme, is a machine for evaluating Scheme expressions. If

you enter an expression to a Scheme interpreter, it responds by printing the value

of that expression.

Expressions may be primitives. Scheme also provides means of combination for

producing complex expressions from simple expressions. The next subsections

describe primitive expressions and application expressions. Section 3.6 describes

expressions for making procedures and Section 3.7 describes expressions that can

be used to make decisions.

3.4.1 Primitives

An expression can be replaced with a primitive:

Expression ::⇒ PrimitiveExpression

As with natural languages, primitives are the smallest units of meaning. Hence,

the value of a primitive is its pre-defined meaning.

Scheme provides many different primitives. Three useful types of primitives—

numbers, Booleans, and primitive procedures—are described next.

Numbers. Numbers represent numerical values. Scheme provides all the kinds

of numbers you are familiar with, and they mean almost exactly what you think

they mean9.

Example numbers include:

150 0 -12

9The details of managing numbers on computers are complex, and we do not consider them

here.

3-8 CHAPTER 3. PROGRAMMING

3.14159 3/4 999999999999999999999

Numbers evaluate to their value. For example, the value of the primitive expres-

sion 150 is 150.10

Booleans. Booleans represent truth values. There are two primitives for repre-

senting true and false:

PrimitiveExpression ::⇒ #t | #f

The meaning of #t is true, and the meaning of #f is false.

Primitive Procedures. Scheme provides primitive procedures corresponding to

many common functions. Mathematically, a function is a mapping from inputs to

outputs. A function has a domain, the set of all inputs that it accepts. For each

input in the domain, there is exactly one associated output. For example, + is a

procedure that takes zero or more inputs, each of which must be a number. The

output it produces is the sum of the values of the inputs. (We cover how to apply

a function in the next subsection.)

Table 3.1 describes some of the primitive procedures.

3.4.2 Application Expressions

Most of the actual work done by a Scheme program is done by application expres-

sions. The grammar rule for application is:

Expression ::⇒ ApplicationExpression

ApplicationExpression ::⇒ (Expression MoreExpressions)

MoreExpressions ::⇒ ε | Expression MoreExpressions

10By convention, we use the typewriter font to show program text, and the slanted font to

show values. In the DrScheme interactions window, values are shown in blue.

3.4. EXPRESSIONS 3-9

Symbol Description Inputs Output

Arithmetic

+ add zero or more

numbers

sum of the input numbers (0 if there

are no inputs)

* multiply zero or more

numbers

product of the input numbers (1 if

there are no inputs)

- subtract two numbers the value of the first number minus

the value the second number

/ divide two numbers the value of the first number divided

by the value of the second number

Comparison

equal? is equivalent to? two values #t if the input values are the same,

otherwise #f

= is equal to? two numbers #t if the input values have the same

value, otherwise #f

< is less than? two numbers #t if the first input value has lesser

value than the second input value,

otherwise #f

> is greater than? two numbers #t if the first input value has greater

value than the second input value,

otherwise #f

<= is less than or

equal to?

two numbers #t if the first input value is not

greater than the second input value,

otherwise #f

>= is greater than

or equal to?

two numbers #t if the first input value is not less

than the second input value,

otherwise #f

Table 3.1: Selected Scheme Primitive Procedures. Some of these are defined for

more inputs than just the ones shown here. For example, the - procedure works

on one number and on more than two numbers.

3-10 CHAPTER 3. PROGRAMMING

The value of the first expression should be a procedure. All of the primitive pro-

cedures are procedures; in Section 3.6, we will see how to create new procedures.

The remaining expressions are the inputs to the procedure.

For example, the expression (+ 1 2) is an application expression, consisting

of three subexpressions. Although this example is probably simple enough that

you can probably guess that it evaluates to 3, we will demonstrate in detail how

it is evaluated by breaking down into its subexpressions using the grammar rules.

The same process will allow us to understand how any complex expression is

evaluated.

Here is a parse tree for the expression:

Expression

ApplicationExpression

eeeeeeeeeeeeeeeeee

llllllllll

YYYYYYYYYYYYYYYYYY

\\\

(Expression MoreExpressions

llllllllll

YYYYYYYYYYYYYYYYYY
)

PrimitiveExpression Expression MoreExpressions

llllllllll

YYYYYYYYYYYYYYYYYY

+ PrimitiveExpression Expression MoreExpressions

1 PrimitiveExpression ε

2

The first subexpression, +, is a primitive expression. It evaluates to the primitive

addition procedure. The next subexpression, 1, evaluates to the number 1. The

final subexpression, 2, evaluates to the number 2. The application expression is

evaluated by applying the value of the first expression (the primitive procedure +)

to the inputs given by the values of the other expressions. In this case, (+ 1 2)

evaluates to 3.

The subexpressions in an expression can also be complex expressions. As with

any nonterminal, the Expression nonterminals in the application expression can be

3.4. EXPRESSIONS 3-11

replaced with anything that appears on the right side of an expression rule, includ-

ing the application expression rule. Hence, we can build up complex expressions

like this:

(+ (* 10 10) (+ 25 25))

The partial parse tree is:

Expression

ApplicationExpression

eeeeeeeeeeeeeeeeee

llllllllll

YYYYYYYYYYYYYYYYYY

\\\

(Expression MoreExpressions

llllllllll

YYYYYYYYYYYYYYYYYY
)

PrimitiveExpression Expression MoreExpressions

llllllllll

YYYYYYYYYYYYYYYYYY

+ ApplicationExpression

qqqqqqq

MMMMMMM
Expression MoreExpressions

(* 10 10) ApplicationExpression

qqqqqqq

MMMMMMM
ε

(+ 25 25)

This tree is similar to the previous tree, except instead of the subexpressions of the

first application expression being simple primitive expressions, they are now ap-

plication expressions. (We have not shown the complete parse tree for the nested

application expressions, instead denoting them using triangles.)

To evaluate the output application, we need to evaluate all the subexpressions. The

first subexpression, +, evaluates to the primitive procedure. The second subex-

pression, (* 10 10), evaluates to 100, and the third expression, (+ 25 25),

evaluates to 50. Now, we can evaluate the original expression using the values for

its three component subexpressions: (+ (* 10 10) (+ 25 25)) evaluates

to 150.

Exercise 3.1. Predict how each of the following Scheme expressions is evalu-

ated. After making your prediction, try evaluating the expression in DrScheme.

3-12 CHAPTER 3. PROGRAMMING

If the result is different from your prediction, explain why the Scheme interpreter

evaluates the expression as it does.

a. 150

b. (+ 150)

c. (+ (+ 100 50) (* 2 0))

d. (equal? (> 100 50) (< 100 50))

e. (not (equal? (>= 100 100) (> 100 (+ 51 51))))

f. +

g. (�) (+ + <)

�

3.5 Definitions

Scheme provides a simple, yet powerful, mechanism for abstraction. We can

introduce a new name using a definition:

Definition ::⇒ (define Name Expression)

A definition is not an expression since it does not evaluate to a value. Instead of

producing a value, a definition changes the state of the interpreter. After a defini-

tion, the name in the definition is now associated with the value of the expression

in the definition.11

11Alert readers should be worried that we need a more precise definition of the meaning of

definitions to know what it means for a value to be associated with a name. This one will serve

us well for now, but we will provide a more precise explanation of the meaning of a definition in

Chapter ??.

3.6. PROCEDURES 3-13

A name can be any sequence of letters, digits, and special characters (such as -,

>, ?, and !) that starts with a letter or special character. Examples of valid names

include a, Ada, Augusta-Ada, gold49, and yikes!%@#.12

After a name has been bound to a value by a definition, that name may be used in

an expression:

Expression ::⇒ NameExpression

NameExpression ::⇒ Name

For example,

% meters per second13

> (define speed-of-light 299792458)

> speed-of-light

299792458

> (define seconds-per-hour (* 60 60))

> (* speed-of-light seconds-per-hour)

1079252848800

3.6 Procedures

A procedure is a sequence of actions that take inputs and produce an output. In

Section 3.4.1, we saw that Scheme provides some primitive procedures. To con-

struct complex programs, however, we need to be able to create our own proce-

dures.

Procedures are similar to mathematical functions in that they provide a mapping

between inputs and outputs, but they are different from mathematical functions in

two key ways:

12We don’t recommend using most of these names in your programs, however! A good pro-

grammer will pick names that are easy to read, pronounce, and remember, and that are not easily

confused with other names.
13Text after a % is a comment. The Scheme interpreter will ignore any text after a % until the

end of the line.

3-14 CHAPTER 3. PROGRAMMING

• State — in addition to producing an output, a procedure may access and

modify state. This means that even when the same procedure is applied to

the same inputs, the output produced may vary. State makes procedures

much harder to reason about. In particular, it breaks the substitution model

of evaluation we introduce in the next section. We will ignore this issue until

Chapter ??, and focus until then only on procedures that do not involve any

state.

• Resources — unlike an ideal mathematical function, which provides an in-

stantaneous and free mapping between inputs and outputs, a procedure re-

quires resources to execute before the output is produced. The most impor-

tant resources are space (memory) and time. A procedure may need space to

keep track of intermediate results while it is executing. Each step of a pro-

cedure requires some time to execute. Predicting how long a procedure will

take to execute, and finding the fastest procedure possible for solving some

problem, are core problems in computer science. We will discuss these in

Chapter ??. In fact, even knowing if a procedure will finish (that is, ever

produce an output) is a challenging problem. In Chapter ?? we will see that

it is impossible to solve in general.

For the rest of this chapter, however, we will view procedures as idealized mathe-

matical functions: we will consider only procedures that involve no state, and we

will not worry about the resources our procedures require.

3.6.1 Making Procedures

Scheme provides a general mechanism for making a procedure. The syntax is:

Expression ::⇒ ProcedureExpression

ProcedureExpression ::⇒ (lambda (Parameters) Expression)

Parameters ::⇒ ε | Name Parameters

Evaluating a ProcedureExpression produces a procedure that takes as inputs the

Parameters following the lambda.14. The body of the procedure is the Expression

14Scheme uses lambda to make a procedure because it is based on LISP which is based on

Lambda Calculus (which we will cover in Chapter ??.

3.6. PROCEDURES 3-15

Note that a ProcedureExpression can replace an Expression. This means any-

where an Expression is used we can create a new procedure. This is very power-

ful since it means we can use procedures as inputs to other procedures and create

procedures that return new procedures as their output!

3.6.2 Substitution Model of Evaluation

For a procedure to be useful, we need to apply it. In Section 3.4.2, we saw the

syntax and evaluation rule for an ApplicationExpression when the procedure to be

applied is a primitive procedure. The syntax for applying a constructed procedure

is identical to the syntax for applying a primitive procedure.

We need a new rule, though, for evaluating the application. In this case, the first

Expression evaluates to a procedure that was created using a ProcedureExpres-

sion, so we can think of the ApplicationExpression as (the underlined part is the

replacement for the ProcedureExpression):

ApplicationExpression ::⇒
((lambda (Parameters)Expression) MoreExpressions)

To evaluate the application, we evaluate the MoreExpressions in the application

expression. These expressions are known as the operands of the application. The

resulting values are the input to the procedure. There must be exactly one expres-

sion in the MoreExpressions corresponding to each name in the parameters list.

Then, evaluate the expression that is the body of the procedure. Except, instead

of evaluating it normally, whenever any name that matches a name in the parame-

ters list appears that name evaluates to the value of the corresponding input. This

is similar to the way binding worked in Post Production Systems (Section 2.3).

When a value is matched with a procedure parameter, that parameter is bound to

the value. When the parameter name is evaluated, the result is the bound value.

Example 3.1: Squaring. Consider evaluating the following expression:

((lambda (x) (* x x)) 2)

It is an ApplicationExpression where the first sub-expression is the ProcedureEx-

pression, (lambda (x) (* x x)). To evaluate the application, we evaluate

3-16 CHAPTER 3. PROGRAMMING

all the subeexpressions and apply the value of the first subexpression to the values

of the remaining subexpressions. The first subexpression evaluates to a procedure

that takes one parameter named x and has the expression body (* x x). There

is one operand expression, the primitive 2, that evaluates to 2.

To evaluate the application we bind the first parameter, x, to the value of the

first operand, 2, and evaluate the procedure body, (* x x). After substituting

the parameter values, we have (* 2 2). This is an application of the primitive

multiplication procedure. Evaluating the application results in the value 4.

The procedure in our example, (lambda (x) (* x x)), is a procedure that

takes a number as input and as output produces the square of that number. We can

use the definition mechanism (from Section 3.5) to give this procedure a name so

we can reuse it:

(define square (lambda (x) (* x x)))

This defines the name square as the procedure. After this, we can use square

to produce the square of any number:

> (square 2)

4

> (square 1/4)

1/16

> (square (square 2))

16

Abbreviated Procedure Definitions. Since we commonly need to define new

procedures, Scheme provides a condensed notation for defining a procedure:

Definition ::⇒ (define (Name Parameters) Expression)

This is incorporates the lambda invisibly into the definition, but means exactly

the same thing. For example,

(define square (lambda (x) (* x x)))

3.7. DECISIONS 3-17

can be written equivalently as:

(define (square x) (* x x))

The two definitions mean exactly the same thing.

Exercise 3.2.

a. Define a procedure, cube, that takes one number as input and produces as

output the cube of that number.

b. Define a procedure, compute-cost, that takes as input two numbers, the

first represents that price of an item, and the second represents the sales tax

rate. The output should be the total cost, which is computed as the price of the

item plus the sales tax on the item, which is its price time the sales tax rate. For

example, (compute-cost 13 0.05) should evaluate to 13.65.

�

3.7 Decisions

We would like to be able to make procedures where the actions taken depend on

the input values. For example, we may want a procedure that takes two numbers

as inputs and evaluates to the maximum value of the two inputs. To define such a

procedure we need a way of making a decision. A predicate is a test expression

that is used to determine which actions to take next. Scheme provides the if

expression for determining actions based on a predicate.

The IfExpression replacement has three Expression terms. For clarity, we give

each of them names as denoted by the subscripts:

Expression ::⇒ IfExpression

IfExpression ::⇒ (if ExpressionPredicate

ExpressionConsequent

ExpressionAlternate)

3-18 CHAPTER 3. PROGRAMMING

The evaluation rule for an IfExpression is to first evaluate the predicate expression.

If it evaluates to any non-false value, the value of the IfExpression is the value of

the consequent expression and the alternate expression is not evaluated at all. If

the predicate expression evaluates to false, the value of the IfExpression is the

value of the alternate expression and the consequent expression is not evaluated at

all. The predicate expression determines which of the two following expressions

is evaluated to produce the value of the IfExpression.

Note that if the value of the predicate is anything other than false (#f), the con-

sequent expression is used. For example, if the predicate evaluates to #t, to a

number, or to a procedure the consequence expression is evaluated.

The if expression is a special form. This means that although it looks syntacti-

cally identical to an application (that is, it could be an application of a procedure

named if), it is not evaluated as a normal application would be. Instead, we have

a special evaluation rule for if expressions. The reason a special rule is needed

is because we do not want all the subexpressions to be evaluated. With the nor-

mal application rule, all the subexpressions are evaluated, and then the procedure

resulting from the first subexpression is applied to the values resulting from the

others. With the if special form evaluation rule, the predicate expression is always

evaluated, but only one of the following subexpressions is evaluated depending on

the result of evaluating the predicate expression.

This means an if expression can evaluate to a value even if evaluating one of its

subexpressions would produce an error. For example,

(if (> 3 4) (* + +) 7)

evaluates to 7 even though evaluating the subexpression (* + +)would produce

an error. Because of the special evaluation rule for if expressions, the consequence

expression is never evaluated.

Example 3.2: Maximum.

Now that we have procedures, decisions, and definitions, we can understand the

max procedure from the beginning of the chapter. The definition,

(define (max a b) (if (> a b) a b)))

is a condensed procedure definition. It is equivalent to:

3.8. SUMMARY 3-19

(define max (lambda (a b) (if (> a b) a b)))

This defines the name max as the value of evaluating the procedure expression,

(lambda (a b) (if (> a b) a b))

This is a procedure that takes two inputs, named a and b. Its body is an if expres-

sion with predicate expression (> a b). The predicate expression compares

the value that is bound to the first parameter, a, with the value that is bound to

the second parameter, b, and evaluates to #t if the value of the first parameter is

greater, and #f otherwise. According to the evaluation rule for an if expression, if

the predicate evaluates to any non-false value (in this case, #t), the value of the if

expression is the value of the consequent expression, a. If the predicate evaluates

to #f, the value of the if expression is the value of the alternate expression, b.

Hence, our max procedure takes two numbers as inputs and produces as output

the greater of the two inputs.

Exercise 3.3. (�) Define a procedure, max3, that takes three inputs, and produces

as output the maximum value of the three inputs. For example,

(max3 5 7 3)

should evaluate to 7. �

3.8 Summary

At this point, we have covered enough of Scheme to write useful programs. In fact

(as we will see in Chapter ??), we have covered enough to express every possible

computation!

Here we summarize the grammar rules and evaluation rules. Each grammar rule

has an associated evaluation rule. This means that any Scheme fragment that can

be described by the grammar also has an associated meaning that can be produced

by combining the evaluation rules corresponding to the grammar rules.

Program ::⇒ ε | Expression Program | Definition Program

3-20 CHAPTER 3. PROGRAMMING

A program is a sequence of expressions and definitions.

Definition ::⇒ (define Name Expression)

A definition associates the value of the expression with the name.

Definition ::⇒ (define (Name Parameters)

Expression)

Abbreviation for (define Name (lambda Parameters)

Expression)

Expression ::⇒ PrimitiveExpression | NameExpression |
ApplicationExpression |
ProcedureExpression | IfExpression

The value of the expression is the value of the replacement

expression.

PrimitiveExpression ::⇒ Number | #t | #f | primitive procedure

Evaluation Rule 1: Primitives. A primitive expression evaluates to

its pre-defined value.

NameExpression ::⇒ Name

Evaluation Rule 2: Names. A name evaluates to the value

associated with that name.

ApplicationExpression ::⇒ (Expression MoreExpressions)

Evaluation Rule 3: Application. To evaluate an expression:

a. Evaluate all the subexpressions;

3.8. SUMMARY 3-21

b. Then, apply the value of the first subexpression to the values of

the remaining subexpressions.

MoreExpressions ::⇒ ε | Expression MoreExpressions

ProcedureExpression ::⇒ (lambda (Parameters) Expression)

Evaluation Rule 4: Lambda. Lambda expressions evaluate to a

procedure that takes the given parameters and has the expression as

its body.

Parameters ::⇒ ε | Name Parameters

IfExpression ::⇒ (if ExpressionPredicate

ExpressionConsequent ExpressionAlternate)

Evaluation Rule 5: If. To evaluate an if expression, (a) evaluate the

predicate expression; then, (b) if the value of the predicate

expression is a false value then the value of the if expression is the

value of the alternate expression; otherwise, the value of the if

expression is the value of the consequent expression.

The evaluation rule for an application (Rule 3b) uses apply to perform the appli-

cation. We define apply using the two application rules:

• Application Rule 1: Primitives. If the procedure to apply is a primitive

procedure, just do it.

• Application Rule 2: Constructed Procedures. If the procedure to apply

is a constructed procedure, evaluate the body of the procedure with each

parameter name bound to the corresponding input expression value.

Note that evaluate in the Application Rule 2 means use the evaluation rules above

to evaluate the expression. Thus, the evaluation rules are defined using the appli-

cation rules, which are defined using the evaluation rules! This appears to be a

3-22 CHAPTER 3. PROGRAMMING

circular definition, but as with the grammar examples, it has a base case. There

are some expressions we can evaluate without using the application rules (e.g.,

primitive expressions, name expressions), and some applications we can evaluate

without using the evaluation rules (when the procedure to apply is a primitive).

Hence, the process of evaluating an expression will sometimes finish and when it

does we end with the value of the expression.15

Exercise 3.4. Follow the evaluation and application rules to evaluate the following

Scheme expression:

(max 3 4)

where max is the maximum procedure defined as,

(define max (lambda (a b) (if (> a b) a b)))

It is fairly tedious to follow all of the steps (that’s why we normally rely on com-

puters to do it!), but worth doing once to make sure you understand the evaluation

rules. �

Exercise 3.5. Define a procedure, abs, that takes a number as input and produces

the absolute value of that number as its output. For example, (abs 3) should

evaluate to 3, (abs -150) should evaluate to 150, and (abs 0) should eval-

uate to 0. �

15This doesn’t guarantee it will always finish, however! We will see in some examples in the

next chapter where evaluation never finishes.

