
1

David Evans
http://www.cs.virginia.edu/evans

CS150: Computer Science

University of Virginia

Computer Science

Lecture 35: Lecture 35:

Cookie Monsters Cookie Monsters

and and

SemiSemi--Secure Secure

WebsitesWebsites

2Lecture 34: Cookie Monsters

Secure Programming

cs150

“Honor System” Programming

All your users are nice and honest

Nothing terribly bad happens if your
program misbehaves

cs205

“Real World” Programming

Some users are mean and dishonest

Bad things happen if your program
misbehaves

Enough to (hopefully) make you dangerous!

3Lecture 34: Cookie Monsters

Buffer Overflows

int main (void) {
int x = 9;
char s[4];

gets(s);
printf ("s is: %s\n“, s);
printf ("x is: %d\n“, x);

}

Stack

s[0]

s[1]

s[2]

s[3]

x

return address

C Program
a

b

c

d

e

f

g

h

...

4Lecture 34: Cookie Monsters

Buffer Overflows
int main (void) {
int x = 9;
char s[4];

gets(s);
printf ("s is: %s\n“, s);
printf ("x is: %d\n“, x);

}

> gcc -o bounds bounds.c

> bounds
abcdefghijkl

s is: abcdefghijkl
x is: 9

> bounds
abcdefghijklm

s is: abcdefghijklmn
x is: 1828716553

> bounds

abcdefghijkln
s is: abcdefghijkln

x is: 1845493769
> bounds

aaa... [a few thousand characters]
crashes shell

(User input)

= 0x6d000009

= 0x6e000009

Note: your results
may vary
(depending on
machine, compiler,
what else is
running, time of
day, etc.). This is
what makes C fun!

What does this kind of mistake
look like in a popular server?

5Lecture 34: Cookie Monsters

Code Red

6Lecture 34: Cookie Monsters

Security in cs150

Can you have a Buffer Overflow
vulnerability in Scheme, Charme,
LazyCharme, StaticCharme, or Python?

No (unless there is a bug in the underlying
implementation)! Memory is managed by
the interpreter, so you don’t have to
allocate it, or worry about how much space
you have.

2

7Lecture 34: Cookie Monsters

Web Application Security

• Malicious users can send bad input to your
application

• Authentication: most interesting
applications need user logins

8Lecture 34: Cookie Monsters

Cross-Site Scripting
Python Code:

Evaluate using Python
interpreter, send output

Python
Interpreter

to
Client

Database

SQL Command
Values

#!/uva/bin/python

...

Output pages contain
information provided by
other users!

9Lecture 34: Cookie Monsters

Cross-Site Scripting Demo
user: evans
password: $1$79756$Fq4bh/ajnBmzIX.12GPnL0

<script language="javascript">
function button()
{

while (1) alert("I 0wn you!")
}
</script>
<BODY onLoad="button()">

Enter Review:

10Lecture 34: Cookie Monsters

Preventing Cross-Site Scripting

• Never never never ever trust users!

• Everything you generate from user input
needs to be checked and sanitized
(remove the tags)

For your ps9 websites, you may assume all users
are bound by the UVa Honor Code and won’t do
anything evil. But, don’t forget how irresponsible
it is to put something like this on the web!

11Lecture 34: Cookie Monsters

Authentication

12Lecture 34: Cookie Monsters

How do you authenticate?

• Something you know

– Password

• Something you have

– Physical key (email account?, transparency?)

• Something you are

– Biometrics (voiceprint, fingerprint, etc.)

Serious authentication requires at least 2 kinds

3

13Lecture 34: Cookie Monsters

Early Password Schemes

Lx.Ly.xdave

fidoalyssa

PasswordUserID

schemerben

Login: alyssa
Password: spot
Failed login. Guess again.

Login does direct
password lookup
and comparison.

14Lecture 34: Cookie Monsters

Login: alyssa
Password: fido

Terminal

Trusted Subsystem

Eve

Login Process

login sends
<“alyssa”, “fido”>

15Lecture 34: Cookie Monsters

Password Problems

• Need to store the passwords
– Dangerous to rely on database being

secure

• Need to transmit password from user
to host
– Dangerous to rely on Internet being

confidential

T
o
d
a
y

L
a
te

r C
la

ss

16Lecture 34: Cookie Monsters

First Try: Encrypt Passwords

encryptK (“schemer”)ben

PasswordUserID

encryptK (“Lx.Ly.x”)dave

encryptK (“fido”)alyssa

Problem if K isn’t so secret: decryptK (encryptK (P)) = P

• Instead of storing password, store password
encrypted with secret K.

• When user logs in, encrypt entered password and
compare to stored encrypted password.

17Lecture 34: Cookie Monsters

Hashing

9

8

7

6

5

4

3

2

1

0

“neanderthal”“dog”

H (char s[]) = (s[0] – ‘a’) mod 10

“horse”

Many-to-one: maps a
large number of values
to a small number of
hash values

Even distribution: for
typical data sets,
probability of (H(x) = n) =

1/N where N is the
number of hash values
and n = 0..N – 1.

Efficient: H(x) is easy
to compute.

18Lecture 34: Cookie Monsters

Cryptographic Hash Functions

One-way

Given h, it is hard to find x

such that H(x) = h.

Collision resistance

Given x, it is hard to find y ≠ x

such that H(y) = H(x).

4

19Lecture 34: Cookie Monsters

Example One-Way Function

Input: two 100 digit numbers, x and y

Output: the middle 100 digits of x * y

Given x and y, it is easy to calculate
f (x, y) = select middle 100 digits (x * y)

Given f (x, y) hard to find x and y.

20Lecture 34: Cookie Monsters

A Better Hash Function?

• H(x) = encryptx (0)

• Weak collision resistance?
– Given x, it should be hard to find y ≠ x such

that H(y) = H(x).

– Yes – encryption is one-to-one. (There is
no such y.)

• A good hash function?
– No, its output is as big as the message!

21Lecture 34: Cookie Monsters

Actual Hashing Algorithms

• Based on cipher block chaining

– Start by encrypting 0 with the first block

– Use the next block to encrypt the previous block

• SHA [NIST95] – 512 bit blocks, 160-bit hash

• MD5 [Rivest92] – 512 bit blocks, produces
128-bit hash

– This is what we use in HoosHungry

– It has been broken!

22Lecture 34: Cookie Monsters

Hashed Passwords

md5 (“schemer”)ben

PasswordUserID

md5 (“Lx.Ly.x”)dave

md5 (“fido”)alyssa

23Lecture 34: Cookie Monsters

Dictionary Attacks

• Try a list of common passwords
– All 1-4 letter words

– List of common (dog) names

– Words from dictionary

– Phone numbers, license plates

– All of the above in reverse

• Simple dictionary attacks retrieve most
user-selected passwords

• Precompute H(x) for all dictionary entries

24Lecture 34: Cookie Monsters

(at least) 86% of users are
dumb and dumber

14%Other (possibly good passwords)

15%Words in dictionaries or names

18%Six lowercase letters

21%Five same-case letters

14%Four alphabetic letters

14%Three characters

2%Two characters

0.5%Single ASCII character

(Morris/Thompson 79)

5

25Lecture 34: Cookie Monsters

Salt of the Earth

932

2437

1125

Salt

DES+25 (0, “schemer”, 2437)ben

PasswordUserID

DES+25 (0, “Lx.Ly.x”, 932)dave

DES+25 (0, “Lx.Ly.x”, 1125)alyassa

How much harder is the off-line dictionary attack?

DES+ (m, key, salt) is an encryption algorithm that
encrypts in a way that depends on the salt.

Salt: 12 random bits

(This is the standard UNIX password scheme.)

26Lecture 34: Cookie Monsters

Python Code

// We use the username as a "salt" (since they must be unique)
encryptedpass = md5crypt.encrypt (password, user)

bafd72c60f450ed665a6eadc92b3647fevans

9928ef0d7a0e4759ffefbadb8bc84228alyssa

passworduser

27Lecture 34: Cookie Monsters

Authenticating Users

• User proves they are a worthwhile person
by having a legitimate email address

– Not everyone who has an email address is
worthwhile

– Its not too hard to snoop (or intercept)
someone’s email

• But, provides much better authenticating
than just the honor system

28Lecture 34: Cookie Monsters

Registering for Account

• User enters email address

• Sent an email with a temporary password

rnd = str(random.randint (0, 9999999))
+ str(random.randint (0, 9999999))

encrnd = md5crypt.encrypt
(rnd, str(random.randint (0, 99999)))

users.userTable.createUser (user, email, firstnames, \
lastname, encrnd)

... From register-process.cgi

Do you trust Pythons random number generator?

29Lecture 34: Cookie Monsters

Users and Passwords
def createUser(self, user, email, firstnames, lastname, password) :

c = self.db.cursor ()
encpwd = md5crypt.encrypt (password, user)
query = "INSERT INTO users (user, email, firstnames, lastname, password) " \

+ "VALUES ('" + user + "', '" + email + "', '" \
+ firstnames + "', '" + lastname + "', '" + encpwd"')"

c.execute (query)
self.db.commit ()

From users.py (cookie processing
and exception code removed)

def checkPassword(self, user, password):
c = self.db.cursor ()
query = "SELECT password FROM users WHERE user='" + user + "'"
c.execute (query)
pwd = c.fetchone ()[0]
if not pwd:

return False
else:
encpwd = md5crypt.encrypt (password, user)
return encpwd == pwd

30Lecture 34: Cookie Monsters

Cookies

• HTTP is stateless: every request is
independent

• Don’t want user to keep having to enter
password every time

• A cookie is data that is stored on the
browser’s machine, and sent to the web
server when a matching page is visited

6

31Lecture 34: Cookie Monsters

Using Cookies

• Cookie must be sent before any HTML is
sent (util.printHeader does this)

• Be careful how you use cookies – anyone
can generate any data they want in a cookie

– Make sure they can’t be tampered with: use
md5 hash with secret to authenticate

– Don’t reuse cookies - easy to intercept them (or
steal them from disks): use a counter than
changes every time a cookie is used

32Lecture 34: Cookie Monsters

Hungry vs. Cookies
def checkCookie ():

try:
if 'HTTP_COOKIE' in os.environ:

cookies = os.environ['HTTP_COOKIE']
c = Cookie.SimpleCookie(cookies)
user = c['user'].value
auth = c['authenticator'].value
count = users.userTable.getCookieCount (user)
ctest = md5crypt.encrypt (constants.ServerSecret + str(count) + user, \

str(count))
if True:

users.userTable.setCurrentUser (user)
return True

else:
users.userTable.setCurrentUser (False)
return False

else:
return False

except:
return False

ctest == auth:

33Lecture 34: Cookie Monsters

Problems Left
• The database password is visible in plaintext

in the Python code

– No way around this (with UVa mysql server)

– Anyone who can read UVa filesystem can access
your database

• The password is transmitted unencrypted
over the Internet (later)

• Proving you can read an email account is
not good enough to authenticate for
important applications

34Lecture 34: Cookie Monsters

Charge

• Feel free to use the ps8 users/cookies
code for your ps9 site unchanged

• But, don’t put anything really valuable on
your websites without paying more
attention to security!

