Lecture 9: Recursing Recursively

Example
Define a procedure find-closest-number that takes two inputs, a goal number, and a list of numbers, and produces the number in the list numbers list that is closest to goal:

\[
> \text{(find-closest-number 150 (list 101 110 120 157 34 0 588))}
\]

157

\[
> \text{(find-closest-number 12 (list 1 11 21))}
\]

11

\[
> \text{(find-closest-number 12 (list 95))}
\]

95

Finding the Closest
Strategy:
If the first number is closer than the closest number of the rest of the numbers, use the first number.

Otherwise, use the closet number of the rest of the numbers.

Optimistic Function

\[
\begin{align*}
\text{(define (find-closest goal numbers)}\\
\text{(if (< (abs (- goal (car numbers)))}\\
\text{(abs (- goal)}\\
\text{(find-closest-number)}\\
\text{goal (cdr numbers))))))\\
\text{(car numbers)}\\
\text{(find-closest-number)}\\
\text{goal (cdr numbers)))})
\end{align*}
\]
Defining Recursive Procedures

2. Think of the simplest version of the problem, something you can already solve.

If there is only one number, that is the best match.

The Base Case

(define (find-closest-number goal numbers)
 (if (= 1 (length numbers))
 (car numbers)
 (if (< (abs (- goal (car numbers)))
 (abs (- goal
 (find-closest-number
 goal (cdr numbers))))
 (car numbers)
 (find-closest-number goal (cdr numbers)))))

Generalizing find-closest-number

• How would we implement find-closest-number-without-going-over?
• What about find-closest-word?
• ...

(find-closest goal lst closeness)
 (if (= 1 (length lst))
 (car lst)
 (if (< (closeness goal (car lst))
 (closeness goal
 (find-closest goal (cdr lst) closeness)))
 (car lst)
 (find-closest goal (cdr lst) closeness)))

How can we implement find-closest-number with find-closest?

(find-closest-number goal numbers)
 (lambda (a b) (abs (- a b))))))

(find-closest-below goal numbers)
 (lambda (a b) (if (> a b) (abs (- a b) 99999))))
find-closest

(define (find-closest goal lst closeness)
 (if (= 1 (length lst))
 (car lst)
 (if (< (closeness goal (car lst))
 (closeness goal
 (find-closest goal (cdr lst) closeness)))
 (car lst)
 (find-closest goal (cdr lst) closeness))))

How can we avoid needing to evaluate find-closest twice?

Lecture 9: Recursing Recursively

 Seen Anything Like This?

(define (find-best-match sample tiles color-comparator)
 (if (= (length tiles) 1)
 (car tiles)
 (pick-better-match
 sample (car tiles)
 (find-best-match sample (cdr tiles) color-comparator))))

(define (pick-better-match sample tile1 tile2 color-comparator)
 (if (color-comparator sample (tile-color tile1) (tile-color tile2))
 tile1
 tile2))

GEB Chapter V

You could spend the rest of your life just studying things in this chapter (25 pages)!
– Music Harmony
– Stacks and Recursion
– Theology
– Language Structure
– Number Sequences
– Chaos
– Fractals (PS3 out today)
– Quantum Electrodynamics (later lecture)
– Sameness-in-differentness
– Game-playing algorithms (later lecture)

Fibonacci’s Problem

Filius Bonacci, 1202 in Pisa:

Suppose a newly-born pair of rabbits, one male, one female, are put in a field. Rabbits mate at the age of one month so that at the end of its second month a female can produce another pair of rabbits.

Suppose that our rabbits never die and that the female always produces one new pair (one male, one female) every month from the second month on.

How many pairs will there be in one year?

Rabbits

From http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fibnat.html
Fibonacci Numbers

GEB p. 136:

These numbers are best defined recursively by the pair of formulas

\[FIBO (n) = FIBO (n - 1) + FIBO (n - 2) \]

for \(n > 2 \)

\[FIBO (1) = FIBO (2) = 1 \]

Can we turn this into a Scheme procedure?

Defining FIBO

1. Be optimistic - assume you can solve it, if you could, how would you solve a bigger problem.
2. Think of the simplest version of the problem, something you can already solve.
3. Combine them to solve the problem.

These numbers are best defined recursively by the pair of formulas

\[FIBO (n) = FIBO (n - 1) + FIBO (n - 2) \]

for \(n > 2 \)

\[FIBO (1) = FIBO (2) = 1 \]

Defining fibo

;;; (fibo n) evaluates to the nth Fibonacci
;;; number
(define (fibo n)
 (if (or (= n 1) (= n 2))
 1 ;;; base case
 (+ (fibo (- n 1))
 (fibo (- n 2)))))

Fibo Results

> (fibo 2) 1
> (fibo 3) 2
> (fibo 4) 3
> (fibo 10) 55
> (fibo 60) Still working after 4 hours...

Why can't our 4Mx Apollo Guidance Computer figure out how many rabbits there will be in 5 years?

To be continued...

Recursive Transition Networks

Can we describe this using Backus Naur Form?

ORNATE NOUN

ARTICLE ADJECTIVE NOUN end

ORNATE NOUN ::= NOUN
Recursive Transition Networks

ORNATE NOUN

begin ARTICLE ADJECTIVE NOUN end

ORNATE NOUN ::= NOUN
ORNATE NOUN ::= ARTICLE ADJECTIVE NOUN

ORNATE NOUN ::= ARTICLE ADJECTIVES NOUN
ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES ::= ε

ORNATE NOUN ::= OPTARTICLE ADJECTIVES NOUN
ADJECTIVES ::= ADJECTIVE ADJECTIVES
ADJECTIVES ::= ε
OPTARTICLE ::= ARTICLE
OPTARTICLE ::= ε

Which notation is better?

Music Harmony

Kleines Harmonisches Labyrinth
(Little Harmonic Labyrinth)

Hey Jude

John Lennon and Paul McCartney, 1968
Lecture 9: Recursing Recursively

Hey Jude

Verse ::= Tonic: F = 1
V: C = 3/2 * F
IV: Bb = 4/3 * F
Push Fifth
Push Fourth
Pop
Tonic: F

Pop

V: C = 3/2 * F
Tonic: F
Push Fifth
Pop

Verses

Bridge ::= Tonic: F = 1
V+V: Gm = 3/2 * 3/2 * F
Push Fourth
V: C = 3/2 * F
Tonic: F
IV: Bb = 4/3 * F

And Anytime you feel the Pain, Hey Jude refrain, don't carry the world up on your shoulders.

Hey Jude ::= Verse VBBD VBBD Verse Verse Better Coda
VBBD ::= Verse Bridge Bridge Dadada (ends on C)
Coda ::= F Eb Bb F

Music

- Almost All Music Is Like This
 - Pushes and pops the listener's stack, but doesn't go too far away from it
 - Repeats similar patterns in structured way
 - Keeps coming back to Tonic, and Ends on the Tonic
- Any famous Beatles song that doesn't end on Tonic?
 "A Day in the Life" (starts on G, ends on E)

Charge

- Challenge:
 Try to find a "pop" song with a 3-level deep harmonic stack
- PS3: due in one week
 Be optimistic!
 You know everything you need to finish it now, and it is longer than PS2, so get started now!

http://www.fractalwisdom.com/FractalWisdom/Fractal.html