
cs150: Final Exam Comments 

Procedures 

Questions 1 and 2 ask you to define procedures that solve specified problems.  For each question, 

you may use any programming language that has been mentioned in CS150 (Scheme, Python, 

Charme, LazyCharme, StaticCharme, Fortran, FP, FL, Java, C, C++, PHP, LISP, or JavaScript).  

If you use a language other than Scheme or Python, you should clearly state in your answer which 

language you are using. 

 

1. (average 8.86 / 10) Define a procedure, xorlist, that takes as input a list, and outputs the 

result of XOR-ing all elements in the list.  The result should be true if the list contains an odd 

number of true values, and false if the list contains an even number of true values.  You may 

assume a procedure, xor, is defined that takes two inputs and outputs the exclusive or of those 

inputs. 

 

Here is a simple Scheme definition: 

 
(define (xorlist lst) 

   (if (null? lst) #f 

       (xor (car lst) (xorlist (cdr lst)))) 

 

Here’s an alternate definition in Python: 
 

def xorlist(lst): 

   return lst.count(True) % 2 == 1 
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2. (8.3/10) Define a procedure, findlast, that takes two inputs, a list and a predicate 

procedure, and outputs the last element in the list for which the predicate procedure applied to 

that element evaluates to true.  If no element in the list satisfies the predicate procedure, 

findlast should produce null (in Scheme) or None (in Python).  For full credit, your 

procedure’s running time should be in O(n) where n is the number of elements in the input list. 

 

The most straightforward solution in Scheme is to find the first satisfying element on the 

reversed list: 

 
(define (findlast lst proc) 

   (let ((rev (reverse (filter lst proc))) 
     (if (null? rev) null (car rev)))) 

 

This approach doesn’t satisfy the running time requirement, however, since our reverse 

procedure has running time in Θ(n
2
) where n is the length of the input list.  Hence, we 

use this procedure: 

 
(define (findlast lst pred) 

  (if (null? lst) 
      null 

      (if (pred (car lst)) 

          (let ((last (findlast (cdr lst) pred))) 

            (if (null? last) 

                (car lst) 

                last)) 

          (findlast (cdr lst) pred)))) 

 

Python’s imperative style offers an easier way to do this: 

 

def findlast(lst, pred): 

 for i in range(len(lst) - 1, 0, -1): 

  if pred(lst[i]): 

   return lst[i] 

 return None 

 

In order for this procedure to have running time in O(n), we need to know the running 

time of the list indexing operation.  Since the procedure involves up to n (the number of 

elements in the input list) list index operations (with average parameter n/2), we need to 

know the time for list indexing in Python does not depend on the value of the index or 

length of the list.  In Scheme, accessing the k
th
 element of a list requires k cdr-operations, 

so it is not constant time (and a procedure like this in Scheme would have running time 

in Θ(n
2
) which is not in O(n)). Python, however, does provide list indexing operations 

that are essentially constant time, so the given procedure does satisfy the needed running 

time requirement. 
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Running Time Analysis 

3. (9.06 / 10) What is the asymptotic running time of the find-middle procedure defined 

below?  Your answer should define all variables it contains and clearly state all assumptions you 

use. 

 
(define (find-middle lst) 

  (define (find-middle-helper lst n) 

    (if (= n 0) 

        (car lst) 

        (find-middle-helper (cdr lst) (- n 1)))) 

  (find-middle-helper lst (floor (/ (length lst) 2)))) 

 

The running time of find-middle is in Θ(n) where n is the number of elements in the 

input lst.  Evaluating an application of find-middle involves one application of the 

helper procedure, find-middle-helper.  The parameters to find-middle-helper are the 

original input list, and (floor (/ (length lst) 2)).  Computing this requires Θ(n) work 

since the length procedure is Θ(n) where n is the number of elements in its input list 

(equivalent to the number of elements in lst).  So, the total running is the work to 

produce the parameters to find-middle-helper, in Θ(n), plus the running time for the 

find-middle-help application.  This procedure cdr’s down the list, doing constant 

work for each element, so it has running time in Θ(n).  Thus, the total running time 

is in Θ(n). 
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4. (8.88/10) What is the asymptotic running time of the intersect procedure defined below?  

Your answer should define all variables it contains and clearly state all assumptions you use. 

 
(define (contains? lst val) 

  (if (null? lst) 

      #f 

      (if (eq? (car lst) val) 

          #t 

          (contains? (cdr lst) val)))) 

                      

(define (intersect lst1 lst2) 

  (if (null? lst1) null 

      (if (contains? lst2 (car lst1)) 

          (cons (car lst1) (intersect (cdr lst1) lst2)) 

          (intersect (cdr lst1) lst2)))) 

 

Θ(n1n2) where n1 is the number of elements in lst1 and n2 is the number of elements 

in lst2.  The intersect procedure cdr’s down lst1, so there are n1 recursive calls 

(although there are two instances of intersect applications in the definition of 

intersect, only one of these is executed on each call, since they are in different sub-

expressions of the if expression).  Each call involves an application of 

(contains? lst2 (car lst1)).  The contains? procedure cdr’s down 

its input list, doing constant work for each element.  So, this involves Θ(n2) work.  

Since there are n1 calls to contains?, the total running time is in Θ(n1n2). 
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Object-Oriented Programming 
 
5.  (8.54 / 10) (Exercise 10.3 from the Course Book) Define a new subclass of poscounter 
where the increment for each next! method application is a parameter to the constructor 

procedure. For example, (make-var-counter 0.1) would produce a counter object whose 

counter has value 0.1 after one invocation of the next! method.  (You should assume all 

definitions from Chapter 10.) 

  

 

(define (make-var-counter increment) 

   (make-subobject 

       (make-poscounter) 

       (lambda (message) 

          (if (eq? message ‘next!) 

              (lambda (self) 

                 (ask self ‘adjust! increment))) 

              #f)))) 

 

Note that it is better to use the self objects adjust! method than to attempt to 

manipulate the count variable directly (which is not actually possible here). 
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Computability/Turing Machines 
 

6. (8.9 / 10) Is the Writes-Hash Problem described below computable or uncomputable?  Your 

answer should include a convincing argument why it is correct. 

 

Input:  A specification of a Turing Machine, T, including its tape, using the 

Turing Machine description grammar from Lecture 37. 

 

Output:   Outputs true if running T would ever write a “#” symbol on the tape; 

otherwise, outputs false. 

The Writes-Hash Problem is uncomputable.  We know the 
Halting Problem is uncomputable, so we can prove that 

Writes-Hash in uncomputable by showing how an algorithmic 

solution to Writes-Hash could be used to solve the Halting 
Problem. 

 
To do this, we need to transform the input Turing Machine T, 

into a machine with the same halting behavior as T, that 
never writes a “#” symbol on the tape.  We can do this by 

replacing all the transition rules that would write a “#” 
symbol with rules that are otherwise identical by instead 

write a “����” symbol, where ���� is some symbol that is not used 
anywhere in T.  Then, for every transition rule that has “#” as 

the input symbol, we need to create an additional transition 
rule with the same states, tape direction, and output symbol 

but with “����” as the input symbol.  This ensures that the 

original behavior of T is preserved, except now it writes ���� 
instead of #.   

 
Then, we modify all transitions to the Halt state in T to 

instead transition to a state that writes a “#” on the tape 
(and then transitions to Halt).  Hence, in the modified 

machine, no “#” is written except if the machine would halt, 
and then a # is always written.  Thus, the result of the 

Writes-Hash Problem on the modified TM is a solution to the 

Halting Problem on the original TM.  But, since we know the 
Halting Problem is uncomputable, this means the Writes-
Hash Problem is also uncomputable. 
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Lambda Calculus 
 

7.  (8.65 / 10) Define a Lambda Calculus term, sub, that corresponds to subtraction.  You may 

assume all the definitions from Lecture 40.  Your sub definition should satisfy the following 

properties: 

 

sub 1 zero ⇒ 1 

sub 1 1 ⇒ zero 

sub 2 1 ⇒ 1 

sub 2 zero ⇒ 2 

sub 5 2 ⇒ 3 
 

 
 

Interpreters 
 

The next two questions as you to modify the StaticCharme interpreter to support the begin 

special form.  You do not need to modify the interpreter, but if you want to try out your solution 

you can download the StaticCharme interpreter from 

http://www.cs.virginia.edu/cs150/final/staticcharme.zip.  This has been updated from the version 

provided in the Exam 2 comments to include the changes to meval and typecheck necessary 

to support begin expressions, with stub procedures for your answers to question 8 and 9. 
 

8. (7.94 / 10) Define the evalBegin procedure to implement the evaluation rule for begin.  

The StaticCharme begin expression should have the same evaluation rule as the Scheme begin 

expression. 

 

 

 

def sub ≡≡≡≡ λ x. λ y. if (zero? y) x (sub (pred x) (pred y)) 

 

This is very similar to the definition of add we saw in class, except we are using pred 

for both terms, since as y gets closer to zero the value of the output should decrease. 

def evalBegin(expr, env): 
    for subexpr in expr[1:-1]: 

        meval(subexpr, env) 
    return meval(expr[-1], env) 
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9. (7.48 / 10) Define the typeBegin procedure to implement the type checking rule for begin. 

The type of a begin expression is an error type if the expression has no subexpressions, or if any 

of the subexpressions are mistyped.  Otherwise, the type is the type of the last subexpression. 

 

For example, 

 
StaticCharme> (begin (+ 3 #t) 4) 

Error: Parameter type mismatch: expected (Number Number), given 

(Number Boolean) 
StaticCharme> (begin ) 

Error: No expressions in begin 

StaticCharme> (begin (+ 3 3) #t #f (* (+ 7 8) 10)) 

150 

 

 

 

def typeBegin(expr, env): 
    assert isBegin(expr) 

    res = CErrorType ("No expressions in begin") 
    for subexpr in expr[1:]: 

        res = typecheck(subexpr, env) 
        if res.isError(): 

            return res 
    return res 
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10. (6.38 / 10) a) Explain why it does not make any sense to actually add begin to 

StaticCharme, unless additional special forms or primitives are also added. 

 

 

b) Explain why LazyCharme does not need a begin special form (even if additional primitives 

and special forms were added to LazyCharme). 

 

 

The begin expression is needed when expressions need to be 
evaluated for their side-effects.  The values of the begin sub-

expressions are not used, except for the last one.  In 
StaticCharme, there are no expressions that have side-

effects.  So, there is no need to use a begin expression; it 
could always be replaced by just the last sub-expression. 
   

In LazyCharme, we could define begin as a normal procedure, 
so there is no need for it as a special form.  We only need it 

as a special form in Scheme (and LazyCharme), because the 
order in which application subexpressions are evaluated is 

not determined.  In LazyCharme, operand subexpressions are 
evaluated when their values are needed, so we could define a 
begin procedure that uses each value in order. 


