

Collaboration Policy - Read Carefully

For this problem set, you are required to work with an assigned partner. You will receive an
email before Wednesday's class containing the partner assignments.

Before starting to work with your partner, you should go through questions 1 and 2
yourself on paper. When you meet with your partner, check if you made the same predicitions.
If there are any discrepancies, try to decide which is correct before using DrScheme to evaluate
the expressions.

You and your partner should work together on the rest of the assignment and turn in a single
staped document containing both your answers to the questions 1 and 2, and one answer to the
rest of the questions with both of your names on it. You should read the whole problem set
yourself and think about the questions before beginning to work on them with your partner.

In addition to your partner, you may discuss this assignment with other students in the class and
ask and provide help in useful ways. You may consult any outside resources you wish including
books, papers, web sites and people except for materials from previous cs150 courses. If you use
resources other than the class materials, indicate what you used along with your answer.

You are strongly encouraged to take advantage of the lab hours posted on the cs150 website.

Purpose

� Practice programming with procedures.
� Become familiar with cons cells and how they can be used to manage complex data.
� Understand recursive procedures.
� Create the beginnings of a poker bot that might win the 2007 World Poker Robot Championships

These robots are much better than the average player ... It would for sure make money online.
Phil Laak, Los Angeles Times, July 18, 2005.

In this problem set, you will develop procedures that can calculate odds for poker. Actually creating a poker
bot involves making decisions based on incomplete information about what the other players have and how
they behave. This is much harder than just calculating odds, but knowing the odds is important for any poker
strategy.

In the game we will consider, Texas Hold 'Em (this is the poker variant that is used in most major
tournaments) each player is dealt two hole cards. These are kept hidden from the other players and can only
be used by the player who was dealt them. Then, five community cards are dealt. Every player may use these
cards. There are betting rounds after the hold cards are dealt, and after the third, fourth, and final community
cards.

At the end of the hand, each player makes their best five-card hand using as many of their own hole cards as
they want and the remaining cards from the community cards. So, a player may make a hand using just the
five community cards (and none of their hole cards), either of their hole cards and any four of the community
cards, or both of their hold cards and any three of the community cards.

To calculate the odds a player will win a hand, we need to know all possible hands that player could get and
how many of them beat the other player's hand. For example, when there is one community card left to be
dealt, that means we need to consider how many of the remaining cards in the deck will allow the player to
make a hand that is better than the other players hand.

University of Virginia, Department of Computer Science
cs150: Computer Science — Spring 2007

Problem Set 2:
Procedurally Predicting Poker Probabilities

Due: Friday, 2 February
Beginning of class

Page 1 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

Reading: Chapters 4 and 5 of the course book.

Becoming Pros at Cons

It never hurts for potential opponents to think you're more than a little stupid

and can hardly count all the money in your hip pocket, much less hold on to it.
Amarillo Slim

The simplest compound data structure is a pair: a way of grouping two things into one. In Scheme, we can
make pairs using cons cells. A cons cell has two elements. For silly historical reasons, these are known as the

car and cdr:

cons cell

The elements in a cons pair can be anything, even another cons pair. By using cons pairs inside cons pairs
inside cons pairs we can build up complex data structures to represent any data we want.

Nullifying Null

A list is either the special value null (which represents the empty list), or a pair whose second element is a

list.

Scheme provides many useful procedures for manipulating lists. The ones we use in this assignment include:

� (list Expression*) — evaluates to a list containing the values of all the operand expressions.

Evaluating (list 1 2 3) is equivalent to (cons 1 (cons 2 (cons 3 (cons 4 null)))).

� (null? Expression) — evaluates to #t if and only if the operand evaluates to null

� (list? Expression) — evaluates to #t if and only if the operand evaluates to a list.

� (length Expression) — evaluates to the number of elements in the value the operand evaluates to.

Produces an error if the operand does not evaluate to a list. Note that null is a list of length 0.
� (append Expression1 Expression2) — evaluates to a list containing the elements of the list

Expression
1
 evaluates to followed by the elements of the list Expression

2
 evaluates to. Produces an

error if either operand does not evaluate to a list.
� (map Expression1 Expression2) — evaluates to a list that contains elements that result from

applying the procedure Expression
1
 evalutes to, to each elements in the list Expression

2
 evaluates to.

Produces an error if Expression
1
 does not evaluate to a procedure or Expression

2
 does not evaluate to a

list.
� (sort Expression1 Expression2) — evaluates to a list that contains the elements that the list

car element cdr element

Question 1: For this question you should not use the Scheme interpreter. For each fragment below,
either:

1. Explain why the fragment is not a valid Scheme expression; or,
2. Predict what value the expression will evaluate to. If the expression evaluates to a compound

data structure, draw a box-and-pointer picture showing the structure (for example, see Figure
2.3 in SICP).

a. (cons 100 50)

b. (cons (cons 1 2) 3)

c. (cons 1 (cons 2 3))

d. (car (cons (cons 1 2) null))

e. (cdr (car (cons (cons 1 2) null)))

f. (car (cdr (cons (cons 1 2) null)))

Page 2 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

Expression
1
 evaluates to, but reordered according to the comparison procedure Expression

2
 evaluates

to. For sort to make sense, Expression
2
 must evaluate to a transitive comparison procedure. That is, if

(Expression2 x y) evaluates to true and (Expression2 y z) evaluates to true, then (Expression2 x

z) must also evaluate to true. Then, the sorted list will have the least element (according to

Expression
2
) at the front. (Note that sort takes its parameters in the opposite order of map: the first

parameter to map is the procedure, the first parameter to sort is the list.)

Chapter 5 of the course book explains how list?, length, append, and map could be defined. We will

explore several ways to define sort in later classes (but especially ambitious students will try to think of how

to do this themselves).

After you have predicted how each expression evaluates, remember to meet with your partner and discuss
your results. After you have done this, try evaluating them in DrScheme to check your predictions. If any
evaluate differently than you expected, explain why DrScheme evaluates the express the way it does.

Question 2: For this question you should not use the Scheme interpreter. For each expression below,
either:

1. Explain why the fragment is not a valid Scheme expression; or,
2. Predict what value the expression will evaluate to. If the expression evaluates to a compound

data structure, draw a box-and-pointer picture showing the structure (for example, see Figure
2.3 in SICP).

Assume the following definition is evaluated before each expression below is evaluated:
(define intsto3 (list 1 2 3))

a. (list? (car intsto3))

b. (list? (cdr intsto3))

c. (length (car intsto3))
d. (length (cdr (cdr (cdr intsto3))))

e. (length (append intsto3 intsto3))

f. (length (append intsto3 4))

g. (length (append intsto3 null))

h. (map (lambda (x) x) intsto3)

i. (car (map (lambda (x) (> x 2)) (map (lambda (x) (+ x 3)) intsto3)))

j. (length (apply append (map (lambda (x) (list x (+ 1 x) (+ 2 x))) intsto3)))

The procedure (apply Expression1 Expression2) expects the first operand to

evaluate to a procedure and the second operand to evaluate to a list. It evaluates to
the value Expression

1
 would evaluate to on operands that are the elements of the

list Expression
2
 evaluates to. For example, (apply + (list 1 2 3)) means the

same thing as (+ 1 2 3).

k. (car (sort intsto3 >))

Download: Download ps2.zip to your machine and unzip it into your home directory J:\cs150\ps2

(it will take some time to download because it contains many tile images, so start the download and
continue reading while it is finishing). See the Lab Guide document for instructions on unziping files
and creating directories.

This file contains:

� ps2.scm - A template for your answers. You should do the problem set by editing this file.
� poker.scm - Provided code for this problem set. You should examine, but not need to modify,

this file.

Page 3 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

Representing Cards

To represent a card we need to keep track of both its rank (2 through Ace) and its suit (Hearts, Diamonds,
Clubs, or Spades). We can do this using a cons cell: (these definitions are in poker.scm

 (define (make-card rank suit) (cons rank suit))

 (define card-rank car)

 (define card-suit cdr)

We use the numbers 2 through 10 to represent the normal card ranks, and 11 (Jack), 12 (Queen), 13 (King),
and 14 (Ace) to represent the special cards. The definitions in poker.scm allow us to use the names Ace, King,

Queen, and Jack for these ranks.

Sorting Hands

In order to evaluate a hand, it will be useful to sort the hand according to the card values.

Since the rankings of poker hands don't just depend on the card values, but on having pairs, triples, and quads
of a given card, it will be more useful to sort the cards according to first the number of duplicates of each
rank, and then by rank. For example, if the hand is Ac Js Jc 7d 4c the procedure sort-by-ranks should

produce ((Js Jc) (Ac) (7d) (4c)) since the pair of Jacks are more important than the single A. Note that

instead of being just a list of cards, the result is now a list of lists of cards.

The procedure sort-by-ranks is defined:

Question 3: Define a procedure higher-card? that takes two cards are operands and evaluates to #t

if and only if the first card has a higher rank than the second card. Note that the card suit does not
matter in this comparison.

If your higher-card? procedure is correct, you should get the following interactions:

> (higher-card? (make-card Ace Diamonds) (make-card King Spades))

#t

> (higher-card? (make-card 3 Clubs) (make-card 2 Clubs))

#t

> (higher-card? (make-card Ace Diamonds) (make-card Ace Spades))

#f

Question 4: Define a procedure sort-hand that takes one operand that is a list of cards, and evaluates

to the cards sorted by decreasing card value (the highest card should be first in the list).

If your sort-hand procedure is correct, you should get the following interactions (the display-

cards procedure provided in poker.scm makes it easier to see the cards; the sample hands are also

defined in poker.scm):

> (display-cards (sort-hand royal-flush))

"Ah Kh Qh Jh 10h"

> (display-cards (sort-hand ace-high))

"Ad 10s 8c 7c 3s"

Hint: you should not need more than one line for your definition.

Page 4 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

(define (sort-by-ranks cards)

 ;;; sorts cards into lists of cards of each rank, ordered by most

 ;;; cards and highest cards within group

 (sort (combine-adjacent-matches ;; combine them into lists of matching rank

 same-rank?

 (sort-hand cards)) ;; cards sorted by rank

 (lambda (r1 r2)

 (if (= (length r1) (length r2))

 (higher-card? (car r1) (car r2))

 (> (length r1) (length r2)))))

Ranking Hands

There are few things that are so unpardonably neglected in our country as poker. The

upper class knows very little about it. Now and then you find ambassadors who have

sort of a general knowledge of the game, but the ignorance of the people is fearful.

Why, I have known clergymen, good men, kind-hearted, liberal, sincere, and all that,

who did not know the meaning of a flush. It is enough to make one ashamed of the

species.
Mark Twain

There are two ways that a hand could beat other hands:

1. It is in a better category of hands (e.g., a flush beats a straight)
2. It is in the same category of hands, but with higher cards

The ranking of the hand categories is shown next.

(Note: we've listed wheel straight as a separate hand category, even though it is usually listed just as a
straight. It is the only straight that can use A as a low card, and the lowest possible straight.)

We have provided the higher-hand? procedure that defines the poker rules:

Category Description Example

Straight Flush Five cards in sequence all of the same suit Ks Qs Js 10s 9s

Four-of-a-Kind
("Quads")

Four cards of the same rank 3h 3d 3c 3s Jd

Full House
Three cards of matching rank and two different cards of

matching rank
Ac As Ah 7d

7h

Flush Five cards of the same suit
Qh 10h 8h 3h

2h

Straight Five cards in sequence 9d 8h 7c 6h 5s

Wheel Straight Ace-2-3-4-5 straight 5d 4h 3c 2h As

Three-of-a-Kind
("Trips")

Three cards of matching rank 5d 5h 5c Kh Js

Two Pair Two different pairs of matching rank Jd Jh 5c 5h As

Pair Two cards of matching rank 8d 8h Ac 7h 3s

High Card Anything else Kd 9h 7c 5h 2s

Page 5 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

(define (higher-hand? hand1 hand2)

 (cond

 ((straight-flush? hand1) (or (not (straight-flush? hand2))

 (and (straight-flush? hand2)

 (higher-similar-hand? hand1 hand2))))

 ((four-of-a-kind? hand1) (or (and (not (straight-flush? hand2))

 (not (four-of-a-kind? hand2)))

 (and (four-of-a-kind? hand2)

 (higher-similar-hand? hand1 hand2))))

 ((full-house? hand1) (or (and (not (straight-flush? hand2))

 (not (four-of-a-kind? hand2))

 (not (full-house? hand2)))

 (and (full-house? hand2)

 (higher-similar-hand? hand1 hand2))))

 ((flush? hand1) (and (not (beats-flush? hand2))

 (or (and (flush? hand2)

 (higher-similar-hand? hand1 hand2))

 (not (flush? hand2)))))

 ((wheel-straight? hand1) (not (or (any-straight? hand2) (beats-straight? hand2))))

 ((three-of-a-kind? hand1) (and (not (beats-trips? hand2))

 (or (and (three-of-a-kind? hand2)

 (higher-similar-hand? hand1 hand2))

 (not (three-of-a-kind? hand2)))))

 ((three-of-a-kind? hand1) (and (not (beats-trips? hand2))

 (or (and (three-of-a-kind? hand2)

 (higher-similar-hand? hand1 hand2))

 (not (three-of-a-kind? hand2)))))

 ((two-pair? hand1) (and (not (beats-two-pair? hand2))

 (or (and (two-pair? hand2)

 (higher-similar-hand? hand1 hand2))

 (not (two-pair? hand2)))))

 ((pair? hand1) (and (not (beats-pair? hand2))

 (or (and (pair? hand2)

 (higher-similar-hand? hand1 hand2))

 (not (pair? hand2)))))

 (#t (and (not (beats-high-card? hand2))

 (higher-similar-hand? hand1 hand2)))))

Your job is to define the higher-similar-hand? procedure it uses to compare two hands in the same

category.

The rules for comparing poker hands of the same category specify that the most important part of the hand
should be compared first. The most important part is the highest card with the highest number of duplicates. If
the most important parts are equal, than the next most important part of the hand determines the higher hand.
Note that the sort-by-ranks procedure we defined sorts the cards in a hand according to importance, so you

can determine the higher hand by considering each element of the list produced by sort-by-ranks in order

until you find one that is unequal.

Here are a few examples:

� Jenny has Ad Js Jc 3h 3d. Mark has Ks Js Jc 4h 4d. Mark has the higher hand. Both hands are in the
category two pair. The most important part of the hand is the higher of the two pairs. Both Jenny and
Mark have Jacks. The next most important part of the hand is the lower of the two pairs. Mark has
fours, which beat Jenny's threes. The unpaired card doesn't matter, since the lower pair is more
important than a single card.

� Anne has Ac Ad As 4s 4c. Dave has Ac Ad 4d 4s 4c. Anne has the higher hand. Both hands are in the
category full house. The most important part of the hand is the three-of-a-kind. Anne's Aces beat Dave's
fours.

� Greg has Ac Ks 5d 3s 2h. Erin has Ad Ks 5d 4c 2h. Erin has the higher hand. Both players have no
pairs or special hands, so the high card wins. The highest card is most important. Both have Aces. The
next highest card is next most important, but again they both have Kings. Next, we compare the fives,
which again match. The fourth highest card is next most important. Erin's four beats Greg's three, so
Erin has the higher hand.

� Alyssa has Ac Kc Qc Jc 10c. Ben has Ad Kd Qd Jd 10d. Neither player has a higher hand. Both players
have straight flushes with the highest card an Ace. The hands are equal.

Page 6 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

Finding the Monster

To find the best possible hand, we will need to consider all possibilities and use the higher-hand? procedure
to identify the best hand among them. There are five community cards and two hole cards, so a player can
make a hand by using both hole cards and choosing any three of the community cards, by choosing one of the
hole cards and any four of the community cards, or by just using the five community cards.

To find possible hands, you will find this procedure (defined in poker.scm useful:

(define (choose-n n lst)

 ;; operands: a number n and a list (of at least n elements)

 ;; result: evaluates to a list of all possible was of choosing n elements from lst

 (if (= n 0)

 (list null)

 (if (= (length lst) n)

 (list lst) ; must use all elements

 (append

 (choose-n n (cdr lst)) ;; all possibilities not using the first element

 (map (lambda (clst) (cons (car lst) clst))

 (choose-n (- n 1) ;;; all possibilities using the first element

 (cdr lst)))))))

Question 5: Define the higher-similar-hand? procedure, completing the template we have

provided in ps2.scm. It should take two poker hands as operands, and can assume the hands are of the

same category. It should evaluate to #t if and only if the first hand beats the second hand.

If your procedure is correct, you should get the following interactions:

> (higher-hand? pair-jacks pair-kings)

#f

> (higher-hand? pair-kings pair-jacks)

#t

> (higher-hand? queens-up queens-up)

#f

> (higher-hand? ace-high ace-higher)

#f

> (higher-hand? ace-higher ace-high)

#t

> (higher-hand? kings-full-of-aces kings-full-of-jacks)

#t

Question 6: Define the possible-hands procedure, completing the template we have provided in

ps2.scm. It should take two operands: the first is a list of two cards representing a player's hole cards;

the second is a list of 5 cards representing the community cards. It should evaluate to a list of all
possible hands that could be made using 0, 1, or 2 of the player's hole cards and enough of the
community cards to make a five-card hand.

Note that your possible-hands procedure doesn't depend on the elements of the operands being

cards. You may find it easier to test by using scalar values instead. For example, (possible-hands

(list 1 2) (list 'a 'b 'c 'd 'e)) should evaluate to a list containing these elements (in any

order):

((a b c d e)

 (1 b c d e) (1 a c d e) (1 a b d e) (1 a b c e) (1 a b c d)

 (2 b c d e) (2 a c d e) (2 a b d e) (2 a b c e) (2 a b c d)

 (1 2 c d e) (1 2 b d e) (1 2 b c e) (1 2 b c d) (1 2 a d e)

 (1 2 a c e) (1 2 a c d) (1 2 a b e) (1 2 a b d) (1 2 a b c))

Page 7 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

Now that we have a list of all possible hands, we can find the best hand using the higher-hand? procedure.

After the Turn

After the fourth community card (known as turn) has been dealt, there is one more community card to come.
To make good decisions, a player needs to know the likelihood that she will have the winning hand after the
final card is dealt, but doesn't know what the final card is.

For simplicity, we will assume the player is playing against only one opponent, and has good enough card-
reading skills to know the other player's exact hand. (Of course, no real poker player is that good, but in many
cases players do have a reasonable guess what cards the other players are holding.)

To analyze a hand, we determine how many of the possible river cards would allow the player to win or draw.
The analyze-turn-situation procedure is defined below (and in poker.scm):

(define (accumulate-outs lst)

 ; lst is a list of triples representing cards

 (if (null? lst) (list null null null)

 (let ((rest-outs (accumulate-outs (cdr lst))))

 (list (append (car (car lst))

 (car rest-outs))

 (append (car (cdr (car lst)))

 (car (cdr rest-outs)))

 (append (car (cdr (cdr (car lst))))

 (car (cdr (cdr rest-outs))))))))

(define (analyze-turn-situation hole1 hole2 community)

 ;; remove all known cards from the deck

 (let ((current-deck (remove-cards (append hole1 hole2 community)

 full-deck)))

 ;; we want to find out how many of the remaining cards produce each

 result

 (accumulate-outs

 (map (lambda (river-card)

 (let ((outcome

 (compare-hands?

 (find-best-hand hole1

 (cons river-card community))

 (find-best-hand hole2

 (cons river-card community)))))

Question 7: Define the find-best-hand procedure, completing the template we have provided in

ps2.scm. It should take two operands: the first is a list of two cards representing a player's hole cards;

the second is a list of 5 cards representing the community cards. It should evaluate the best possible
hands that could be made by the player using 0, 1, or 2 of the player's hole cards and enough of the
community cards to make a five-card hand.

If your procedure is correct, you should get the following interactions:

> (display-cards (find-best-hand aces-in-hole trip-nines))

"9d 9c 9s Ah Ad"

> (display-cards (find-best-hand big-slick community-clubs4))

"Ac Qc Jc 7c 5c"

> (display-cards (find-best-hand big-slick royal-flush))

"Ah Kh Qh Jh 10h"

For the first hand, both hole cards are used with the three nines to make a full house. For the second
hand, the Ace of clubs hole card is used with the four club community cards to make a flush. For the
third hand, no hole cards are used and the five community cards make a straight flush.

Hint: as in Question 4, you should be able to define this using only one line. Don't worry about
efficiency in your definition (for now).

Page 8 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

 (if (eq? outcome 'higher)

 (list (list river-card) null null)

 (if (eq? outcome 'equal)

 (list null (list river-card) null) ; chop

 (list null null (list river-card))))))

 current-deck))))

The analyze-turn-situation procedure determines the cards left in the deck by removing the known hole

cards and community cards as current-deck. Then, it uses map to try each possible river card from the

current deck. If the river card would allow player 1 to produce a better hand than player 2, it puts that card as
the first element in the list; if the hands would be equal, it puts that card as the second element; if player 2
would win, it puts that card as the third element. The accumulate-outs procedure combines all the sublists

to form a list of all the winning and chopping outs.

Here's an example:

> (show-analysis (analyze-turn-situation connect67 aces-in-hole straight-

draw4))

Winning outs (15): 2c 3c 5h 5d 5c 5s 9c 10h 10d 10c 10s Jc Qc Kc Ac

Chopping outs (0):

Losers (29): 2h 2d 2s 3h 3d 3s 4h 4d 4s 6h 6d 6s 7h 7d 7s 8h 8d 8s 9h 9d

Jd Js Qh Qd Qs Kh Kd Ks As three-clubs))

To consider the situation after the flop (the first three community cards have been dealt), we need to look at
all possibilities for both the fourth and fifth card. The analyze-flop-situation does this:

(define (analyze-flop-situation hole1 hole2 community)

 ;; operands: hole cards for player 1 and play 2 and community cards

 ;; there must be 2 cards in each players hole cards and 3 community cards

 ;; result: a list of three elements (winning-outs, chopping-outs, loser) showing

 ;; the turn and river cards that will lead for the each outcome for player 1.

 (let ((current-deck (remove-cards (append hole1 hole2 community) full-deck)))

 ;; we want to find out how many of the remaining cards produce each

 result

 (map (lambda (turn-card)

 (analyze-turn-situation hole1 hole2 (cons turn-card

 community)))

 current-deck)))

Credits: This problem set was originally developed for UVA CS200 Fall 2005 by David Evans
and tested and improved by Dan Upton.

Question 8: Predict how long it will take to evaluate an application of analyze-flop-situation
(for example, (analyze-flop-situation connect67 aces-in-hole straight-draw3)). You

should start by timing analyze-turn-situation. You can do this using the time procedure: (time

(show-analysis (analyze-turn-situation connect67 aces-in-hole straight-draw4))).

This will print out something like cpu time: 3523 real time: 4823 gc time: 203 (the numbers

here are made up for the example). The number after real time gives the number of milliseconds it
took to do the evaluation (in this case 4.823 seconds). If you want to try evaluation and timing
analyze-flop-situation you can, but you should predict how long it will take first.

Question 9: This implementation is obviously too slow for many practical uses, including building a
poker bot. Suggest some approaches you would use if you wanted to make a faster implementation.

Page 9 of 9CS150: Problem Set 2: Procedural Poker

1/22/2007

